Diagnóstico da cadeia de valor da tilapiicultura no Brasil
Diagnóstico da cadeia de valor da tilapicultura no Brasil
Diagnóstico da cadeia de valor da tilapicultura no Brasil
181 p. : il. color. ; 21 cm x 28 cm.
CDD 664.942
© Embrapa, 2018
Autores

Renata Melon Barroso
Médica Veterinária, doutora em Biologia Molecular,
Analista da Embrapa Pesca e Aquicultura, Palmas, TO

Andrea Elena Pizarro Muñoz
Economista, mestre em Economia,
Pesquisadora da Embrapa Pesca e Aquicultura, Palmas, TO

Elda Fontinele Tahim
Engenheira de Pesca, Doutora em Ciências Econômicas,
Analista do Centro de Ensino Tecnológico, Fortaleza, CE

Daniel Chaves Webber
Administrador, mestre em Recursos Hídricos,
Analista da Embrapa Solos

Antônio da Costa Albuquerque Filho
Engenheiro de Pesca, mestre em Engenharia de Pesca e Recursos.
Diretor Técnico da Associação Cearense de Criadores de Camarão - ACCC e
Secretário-Executivo da Associação Cearense de Aquicultores - ACEAQ

Manoel Xavier Pedrosa Filho
Agrônomo, doutor em Economia,
Pesquisador da Embrapa Pesca e Aquicultura
Ruy Albuquerque Tenório
Engenheiro Agrônomo, Doutor em Ciências,
Docente da Universidade do Estado da Bahia (UNEB),
Pesquisador do COMRIOS/UNEB, Paulo Afonso, BA

Fernando Jesus do Carmo
Engenheiro Agrônomo,
CATI - Jales, SP

Luiz Eduardo Guimarães de Sá Barreto
Engenheiro de Pesca,
Emater/PR, Curitiba, PR

Luiz Danilo Muehlmann
Médico Veterinário,
Emater/PR, Curitiba, PR

Fabiano Muller Silva
Médico Veterinário,
EPAGRI, Florianópolis, SC

Gelson Hein
Médico Veterinário,
Emater/PR, Toledo, PR
Apresentação

A tilapicultura se desenvolve no Brasil a passos largos, liderando a aquicultura brasileira em termos de volume e mercado. Praticamente todo território brasileiro consome produtos da tilápia, atingindo o consumo anual de 1,65 kg por pessoa. Com uma alta demanda de mercado, há espaço para um crescimento ainda maior, sendo uma cadeia com condições de competir com as cadeias das carnes bovina, suína e de frango e em paralelo, diminuir a importação de filés de peixe importados que pressionam negativamente a balança comercial brasileira do pescado em bilhões de dólares todos os anos. Dada à importância dessa indústria que atraí inúmeros investidores, desde grandes e médios empresários a pequenos produtores, o conhecimento da estrutura dessa cadeia produtiva se torna estratégico para o seu planejamento ordenado e sustentável. Essa obra apresenta e analisa dados primários inéditos levantados junto a diferentes atores da cadeia que compõem os principais polos produtivos de tilapia do Brasil, incluindo informações sobre a história de desenvolvimento de cada polo, suas características produtivas e de mercado.

Eric Arthur Bastos Routledge
Chefe Adjunto de Pesquisa e Desenvolvimento
Embrapa Pesca e Aquicultura
Sumário

1. Introdução ... 17
2. Metodologia ... 25
3. Diagnóstico dos Polos de Tilapicultura dos Açudes Castanhão e Orós .. 27
 3.1. Aspectos gerais ... 28
 3.1.1. Aspectos geográficos e climáticos ... 28
 3.1.2. Características naturais do Polo do Castanhão .. 31
 3.1.3. Condições naturais do Polo de Orós .. 32
 3.2. Fatos históricos relevantes para o desenvolvimento dos Polos .. 33
 3.3. Caracterização da tilapicultura .. 35
 3.3.1. Perfil dos produtores .. 36
 3.3.2. Caracterização tecnológica ... 37
 3.3.3. Forma de comercialização e agregação de valor da tilápia cearense 38
 3.3.4. Mercado ... 41
 3.3.5. Infraestrutura do Polo .. 44
 3.3.6. Financiamento da atividade ... 46
 3.3.7. Particularidades da produção de cada Polo ... 47
 3.4. Governança e estrutura da cadeia de valor da tilápia ... 49
 3.4.1. Estrutura da cadeia de suprimentos .. 49
 3.4.2. Governança da cadeia de valor .. 53
 3.4.3. Análise competitiva dos Polos do Ceará .. 54
 3.4.4. Distribuição do valor agregado .. 55
 3.5. Arcabouço legal e regulatório .. 55
 3.5.1. Licenciamento e outorga de água no estado ... 56
 3.5.2. Políticas públicas de âmbito local ... 57
3.6. Principais gargalos ... 58
3.7. Perspectivas futuras.. 59
4. Diagnóstico do Polo de Tilapicultura do Submédio e Baixo São Francisco (SBSF) 61
 4.1. Aspectos gerais ... 62
 4.1.1. Aspectos geográficos e climáticos .. 62
 4.2. Fatos históricos relevantes para o desenvolvimento do Polo .. 69
 4.3. Caracterização da tilapicultura no Polo do SBSF ... 72
 4.3.1. Perfil dos produtores ... 72
 4.3.2. Características da tilapicultura .. 72
 4.3.3. Caracterização tecnológica ... 73
 4.3.4. Agregação de valor e estrutura de mercado ... 74
 4.3.5. Infraestrutura do Polo ... 75
 4.3.6. Mercado ... 76
 4.4. Governança e estrutura da cadeia de valor da tilápia ... 78
 4.4.1. Estrutura da cadeia de suprimentos ... 78
 4.4.2. Governança da cadeia de valor ... 78
 4.4.3. Análise competitiva do Polo do SBSF ... 79
 4.4.4. Distribuição do valor agregado ... 80
 4.5. O papel das organizações de piscicultores no Polo de tilápia do SBSF 81
 4.6. Arcabouço legal e regulatório ... 81
 4.6.1. Regulação ambiental e cessão das águas públicas da União .. 81
 4.6.2. Políticas públicas de fomento e extensão .. 82
 4.7. Principais gargalos do Polo ... 83
 4.8. Perspectivas futuras do Polo de tilapicultura do SBSF .. 84
5. Diagnóstico do Polo de Tilapicultura da Ilha Solteira ... 86
 5.1. Aspectos gerais ... 87
 5.1.1. Aspectos geográficos e climáticos .. 87
5.2. Fatos históricos relevantes para o desenvolvimento do Polo ... 91
5.3. Caracterização da tilapicultura ... 93
 5.3.1. Perfil dos produtores .. 93
 5.3.2. Características produtivas .. 94
 5.3.3. Caracterização tecnológica ... 95
 5.3.4. Agregação de valor e estrutura de mercado ... 96
 5.3.5. Infraestrutura do Polo .. 97
 5.3.6. Mercado .. 100
5.4. Governança e estrutura da cadeia de valor da tilápia ... 101
 5.4.1. Estrutura da cadeia de suprimentos ... 101
 5.4.2. Governança da cadeia de valor ... 103
 5.4.3. Análise competitiva do Polo da Ilha Solteira .. 104
 5.4.4. Distribuição do valor agregado ... 104
5.5. Arcabouço legal e regulatório ... 105
 5.5.1. Licenciamento ambiental e outorga da água .. 105
 5.5.2. Políticas públicas de fomento e extensão ... 107
5.6. Principais gargalos .. 108
5.7. Perspectivas futuras .. 109
6. Diagnóstico do Polo de Tilapicultura do Paraná - Norte ... 110
 6.1. Aspectos gerais ... 111
 6.1.1. Aspectos geográficos e climáticos do Polo ... 111
 6.2. Fatos históricos relevantes para o desenvolvimento do Polo .. 114
 6.3. Caracterização da tilapicultura ... 116
 6.3.1. Perfil dos produtores .. 116
 6.3.2. Características produtivas .. 116
 6.3.3. Caracterização tecnológica ... 117
 6.3.4. Agregação de valor e estrutura de mercado ... 118
7.4.4. Distribuição do valor agregado ..145
7.5. Arcabouço legal e regulatório ..146
 7.5.1. Regulação ambiental ..146
 7.5.2. Políticas públicas de fomento e extensão ..146
7.6. Principais gargalos ..147
7.7. Perspectivas futuras do Polo de tilápicultura do Oeste do Paraná148
8. Diagnóstico do Polo de Tilápicultura de Santa Catarina ..149
 8.1. Aspectos gerais ...150
 8.1.1. Aspectos geográficos e climáticos do Polo ..150
 8.2. Caracterização da tilápicultura no Polo de Santa Catarina155
 8.2.1. Perfil dos produtores ...155
 8.2.2. Características produtivas ..155
 8.2.3. Caracterização tecnológica ..157
 8.2.4. Agregação de valor e estrutura de mercado ..158
 8.2.5. Infraestrutura do Polo ...161
 8.2.6. Mercado ..163
 8.3. Governança e estrutura da cadeia de valor da tilápia ..164
 8.3.1. Estrutura da cadeia de suprimentos ..164
 8.3.2. Governança da cadeia de valor ...165
 8.3.3. Análise competitiva ...165
 8.3.4. Distribuição do valor agregado ...166
 8.4. Arcabouço legal e regulatório ..167
 8.4.1. Regulação ambiental ...167
 8.4.2. Políticas públicas de fomento e extensão ..167
 8.5. Principais gargalos ..167
 8.6. Perspectivas futuras ..168
9. Considerações finais ..169
9.1. Importância dos frigoríficos na tilapicultura brasileira ... 170
9.2. Novos “players” .. 171
9.3. Polos em ascensão .. 172
9.4. Análise de competitividade dos Polos estudados ... 172
10. Referências .. 175
1. Introdução
A tilápicultura tem mudado o cenário da piscicultura no Brasil. A atividade que crescia de forma tímida e pouco profissionalizada até os anos 2000, conseguiu superar esse cenário através do aumento produtivo, com oferta constante e melhorias da qualidade de seus produtos. Dessa forma, foi possível conquistar o mercado interno e estabelecer uma cadeia produtiva competitiva agregando inclusive a participação de grandes empresas que ajudam a profissionalizar o setor. A sustentabilidade deste segmento está no produto de alta qualidade fornecido com regularidade, com alta aceitação no mercado interno, aliado à capacidade de gerar empregos e promover o desenvolvimento. A diversificação de produtos e a possibilidade de atender a diversos públicos também faz da tilápia uma espécie de sucesso, vide o sertão nordestino, área de baixo Índice de Desenvolvimento Humano - IDH, ser uma região de grande consumo de tilápia, provavelmente associado a grande produção da região, o que possibilita ainda inferir no benefício do aumento produtivo para a segurança alimentar.

Com a possibilidade de intensificar a produção através do uso de tanques-rede em águas públicas, a produção de tilápia cresceu 386% no período de 2005 a 2015. Além dos cultivos em viveiros de terra escavados no interior do Paraná, que também cresceram em intensidade com a adoção de tecnologias e organizações produtivas, os demais clusters foram formados no entorno de grandes reservatórios do país, nos estados em que o cultivo da tilápia em águas públicas é autorizado. No entanto, um princípio de ordenamento que ocorreu depois da implantação dos cultivos, ainda é bastante tímido, permanecendo um dos gargalos do setor.

Hoje, a cadeia produtiva da tilápia encontra-se estruturada, em maior ou menor grau, dependendo da região, e evolui rapidamente para uma indústria consolidada com potencial de manter o mercado estabelecido e conquistar outros, dentro ou fora do país. Além disso, acredita-se que a tilápia pode subsidiar o estabelecimento de uma cadeia de outras espécies de peixes de interesse comercial, como as nativas, cujos pacotes tecnológicos para produção intensiva ainda estão em fase de desenvolvimento.

Contexto

A produção aquícola brasileira teve seus primeiros registros na FAO em 1969, com menos de 10 t produzidas ao ano. Até o início da década de 1990 foi observado crescimento da atividade, que apesar de pequeno, foi constante e regular. A partir de meados da década de 90, o crescimento passou a ser mais vigoroso, obtendo-se grandes avanços na carcinicultura do Nordeste que atingiu o pico de produção em 2003 com 90.000 toneladas, 1/3 do volume total da produção aquícola daquele ano. Nessa fase, outro evento que auxiliou a impulsionar o setor foi o surgimento dos pesque-pague, onde a tilápia apresentou destaque, acarretando no início da produção profissional de tilápias. A partir de 2006, a aquicultura brasileira apresenta um aumento da piscicultura continental em todo o país, devido, entre outros fatores, à permissão de uso das águas da União para fins de aquicultura, chegando a 483.241 t de peixes cultivados em 2015 (IBGE, 2015).

A história da piscicultura brasileira foi fortemente estimulada e positivamente influenciada pelas espécies exóticas domesticadas, como as tilápias, carpas e bagres africanos e norte-americanos, introduzidas no país em 1882 no caso das carpas, década de 50 para as tilápias, e década de 80 para os bagres africanos e norte-americanos (CASTAGNOLLI, 1992). Com a evolução da legislação ambiental na década de 90, especialmente com a Resolução Conama n° 145, a introdução de espécies exóticas no país passou a ser controlada com maior rigor, dificultando e desestimulando essa prática.

A tilápia foi amplamente utilizada para povoamento de açudes e reservatórios no Brasil, especialmente nas regiões Sudeste e Nordeste, com o objetivo de fomentar a pesca artesanal, propiciando a segurança alimentar dos cidadãos rurais e sertanejos. Durante várias décadas, dezenas de importações e introduções sequenciais foram realizadas com a tilápia nesses ambientes, estabelecendo diferentes linhagens de espécies de tilápias nos mais diversos sistemas hídricos do Brasil. Dessa forma, tilápia não deve ser considerada um peixe invasor, mas sim, introduzido pelo Estado brasileiro, como a considera a legislação federal vigente (IBAMA, 1998).
O cultivo de tilápia é o mais importante dentre os cultivos aquícolas do Brasil em termos de volume produzido e, devido a sua rusticidade, simplicidade tecnológica e abertura de empregos no setor, especula-se também um forte impacto socioeconômico. O País está entre os 10 principais produtores de tilápia no mundo, com um crescimento médio anual de 14% nos últimos 10 anos e produção estimada de 220.000 t em 2015 (IBGE, 2015)\(^1\) (Figura 1.1).

![Gráfico Figura 1.1](image1.png)

O crescimento da tilapicultura no Brasil acompanha uma tendência mundial. A espécie vem aumentando em popularidade globalmente, particularmente pelo suprimento das demandas regionais. De acordo com as estatísticas do sistema FishSTAT da FAO, a produção mundial de tilápia cresce 12,5% ao ano tendo chegado aos 5,6 milhões de toneladas em 2014 (Figura 1.2).

![Gráfico Figura 1.2](image2.png)

Figura 1.2. Produção mundial de tilápia desde seu registro em 1950 até 2014, em toneladas (t).

Fonte: FAO (2016).

Em expansão na América Latina, Ásia e África, é consenso que a produção de tilápia tende a continuar a crescer. Segundo dados da FAO, tilápias são cultivadas em pelo menos 145 países, mas apenas 10 países são responsáveis por 91% da produção mundial. Se contarmos os 20 maiores produtores de tilápia, a participação chega a 97% do total (Tabela 1.1).

![Tabela 1.1](image3.png)

Tabela 1.1. Produção mundial de tilápia nos 10 principais países produtores, no ano de 2014.

<table>
<thead>
<tr>
<th>País</th>
<th>Produção da tilapicultura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Produção em 2014 (t)</td>
</tr>
<tr>
<td>China</td>
<td>1.698.483</td>
</tr>
<tr>
<td>Indonésia</td>
<td>1.040.594</td>
</tr>
<tr>
<td>Egito</td>
<td>759.601</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>283.937</td>
</tr>
<tr>
<td>Filipinas</td>
<td>259.198</td>
</tr>
<tr>
<td>Vietnã</td>
<td>244.483</td>
</tr>
<tr>
<td>Brasil</td>
<td>198.728</td>
</tr>
<tr>
<td>Tailândia</td>
<td>188.946</td>
</tr>
<tr>
<td>Taiwan</td>
<td>69.726</td>
</tr>
<tr>
<td>Colômbia</td>
<td>58.500</td>
</tr>
<tr>
<td>Total mundial</td>
<td>5.308.020</td>
</tr>
</tbody>
</table>

Fonte: FAO (2016).

\(^1\) Com a inclusão da aquicultura no levantamento anual da Produção Pecuária Municipal (PPM) em 2013, essa fonte passou a ser usado como referência oficial da produção brasileira. No entanto, ajustes metodológicos mostram, ainda, uma discrepância dos valores oficiais contra aqueles estimados pelo setor.
A grande diferença entre o Brasil e os demais produtores da Tabela acima é a orientação de mercado. A indústria brasileira de tilápia atende, principalmente, o mercado interno - 99% da produção nacional são consumidas no Brasil. Com uma população estimada em 205 milhões de pessoas em 2015, cada brasileiro consome 1,1 kg tilápia por ano. Portanto, estratégias de marketing devem considerar o incentivo de aumento de consumo interno, uma vez que cada 100 g a mais no cardápio brasileiro poderia abrir mercado para 20.500 t de tilápia no mercado nacional. O Brasil também pode trabalhar o mercado externo, e da mesma forma, aumentar o escoamento produtivo. A estratégia de comercialização vai depender, dentre outros fatores, das condições comerciais e das flutuações de câmbio, mas o grande potencial interno é o que fará do País ser menos dependente do mercado externo, por isso deve ser trabalhado.

Em 2012, o Grupo Pão de Açúcar, que gerenciou R$ 57 bilhões em vendas (dados apresentados na Conferência Mundial de Tilápia/RJ/2013[^1]), revelou que a tilápia Figura entre os 20 peixes mais vendidos no segmento de peixes frescos que juntos representaram mais de 70% das vendas. Entre os congelados, a tilápia também estava entre as oito espécies mais vendidas, que juntas somam 70% das vendas de peixes congelados na empresa. Esses dados demonstram que o mercado de pescado é ávido por produtos de qualidade, o que para o pescado se traduz pela oferta constante e padronizada de filé branco, de sabor suave e sem espinha.

Devido à demanda interna crescente, o histórico das operações comerciais do pescado demonstra que o saldo da balança comercial brasileira tem apresentado resultado negativo desde 2006, tanto em valores quanto em volume, uma vez que as exportações não cresceram no período (Figura 1.3).

Em 2015, o déficit foi de aproximadamente US$ 1,109 milhões para importação e 306 mil toneladas de pescado. O bacalhau foi o pescado mais importado, seguido pela categoria chamada “Filés de peixes e outras carnes de peixes, frescos, refrigerados ou congelados” (NCM 0304). Esta última é considerada uma categoria com potencial de concorrer com o mercado de tilápia. Em 2015, segundo a Secex (Secretaria de Comércio Exterior), a importação de produtos dessa categoria foi da ordem de 131.333 t, num valor negociado de mais de US$ 385 milhões. Quanto mais estruturada e profissionalizada a cadeia de valor da tilápia, maior será o seu potencial de competir com os filés importados.

![Figura 1.3: Importação e exportação de pescado pelo Brasil entre os anos de 2011 e 2016.](http://infopesca.org/tilapia)

Fonte: Dados obtidos pelo AliceWeb (BRASIL, 2016). Utilizou-se as categorias NCM 0302 a 0308 para ambos importação e exportação.

A tilápia tem características únicas que facilitam o seu cultivo, como a boa adaptação a diferentes sistemas de produção e regiões geográficas, com grande resistência as alterações ambientais e diferentes sistemas de cultivo. A possibilidade do cultivo intensivo contribui para o incremento da produção da tilápia no Brasil, inclusive com a participação de pequenos produtores. Segundo os dados da Pesquisa Pecuária Municipal (PPM) (IBGE, 2015), aproximadamente 37% da produção nacional de tilápia é realizada em tanques-rede nos reservatórios de Furnas (MG), Castanhão e Orós (CE), Submédio São Francisco (BA/PE), Ilha Solteira (SP/MS) e Paranapanema (PR/SP). Considerando que a área de reservatório público destinado para a aquicultura é de 5,3 milhões de hectares, vislumbra-se um potencial de crescimento significativo do setor num futuro próximo, assim como aumento

dos desafios associados, como o conflito de uso dos corpos hídricos e o surgimento e disseminação de doenças.

Com condições ambientais favoráveis e riqueza de recursos hídricos no País, a produção de tilápia tem potencial de se tornar uma indústria robusta no Brasil, contribuindo para a segurança alimentar e para o crescimento econômico regional. Para isso, políticas para o crescimento ordenado são necessárias para que o setor atinja o potencial esperado, como por exemplo: priorização dos governos estaduais e federais para agilizar os processos de concessão do uso da água (outorga) e de emissão das licenças ambientais para a operação dos empreendimentos; ampliar estímulo para o desenvolvimento dos demais elos da cadeia, incluindo distribuição, beneficiamento, equipamentos e mercado.

As crescentes ações para desenvolvimento do setor e o aumento da demanda pelo pescado têm chamado atenção não apenas dos grandes empreendedores, mas também dos pequenos produtores e produtores familiares que juntos representam 82% dos 18.075 dos empreendimentos aquilícolas brasileiros, participando com 39,5% da produção aquilíca do país (MPA, 2010). Pisciculturas familiares e pequenos produtores representam a diversificação dos atores envolvidos nesta atividade, destacando-se positivamente com relação à redução da pobreza e aumento da segurança alimentar – pela produção de alimento e pela geração de renda, peças centrais no processo de desenvolvimento com inclusão social. Tal contribuição, entretanto, ainda é limitada pela baixa produtividade característica desses produtores, que acaba por restringir a capacidade de assegurar o seu próprio sustento e segurança alimentar (ARIAS et al, 2013). As dificuldades de inserção de seus produtos em um mercado que os remunere de forma adequada podem trazer consequências que vão desde a perda do interesse pela atividade até o agravamento dos problemas financeiros. De fato, os principais programas de desenvolvimento da atividade no país têm focado no aumento produtivo e os demais elos da cadeia produtiva do pescado não têm sido estimulados e desenvolvidos na mesma velocidade.

A falta de um planejamento holístico da atividade traz consequentes dificuldades para o setor, percebida principalmente no final da cadeia, na busca pelo mercado, no desafio da comercialização do produto a preços que cubram tanto os custos de produção quanto os de comercialização e ainda permitam um lucro adequado. Dessa forma, a sustentabilidade da tilapicultura brasileira passa também pela adequação das estratégias de marketing e de ações para melhor organizar a cadeia de produção para atender às exigências do mercado em termos de aumento de qualidade e redução de custos de transação.

Para manter o mercado interno abastecido pela tilápia nacional, aumentar a produção, reduzir o déficit da balança comercial e ser competitivos ao se comparar com os preços dos produtos importados, faz-se necessário conhecer detalhadamente o setor e seus gergais, fornecendo subsídios para a coordenação das ações de Pesquisa e Desenvolvimento (P&D), planejamento, regulamentação e fomento da tilapicultura no país. Contudo, ainda são poucas as informações disponíveis nas estatísticas oficiais (e pouco confiáveis) que permitem uma avaliação setorial do desempenho da aquicultura nacional.

Os Boletins Estatísticos do extinto Ministério da Pesca e Aquicultura (MPA), assim como os Anuários da Pesca do IBAMA e o PPM do IBAMA, são muito recentes e incompletos para balizar uma cobertura ampla e compreensiva do setor em todas as regiões do país. Além disso, tais documentos dificilmente consideram os aspectos sociais da atividade.

No caso específico da tilápia, apesar dos vários estudos, ainda há lacunas de informações e conhecimentos. Entre elas, destacamos:

- As dimensões e impactos sociais da produção da tilápia no Brasil;
- Grau de concentração de mercado;
- Governança da cadeia de valor nos diferentes polos produtivos;
- Desempenho econômico nos diferentes sistemas de cultivos e nas diferentes regiões – custos de produção, custos de comercialização, quais fatores afetam esse desempenho;
- Quais são os competidores da tilápia no mercado brasileiro.
O presente documento é um dos resultados gerados pela pesquisa “Impacto socioeconômico da tilapicultura no Brasil”, executada pela Embrapa Pesca e Aquicultura e parceiros (ACEAQ, CENTEC, UNEB, CATI, EMATER-PR, UNESP Ilha Solteira e EPAGRI). Este projeto visou subsidiar a Embrapa e demais agentes públicos e privados envolvidos com o desenvolvimento da tilapicultura brasileira, com informações estratégicas que auxiliem tomadas de decisões e contribuam para o aumento da competitividade da cadeia produtiva da tilápia no país e a inclusão dos pequenos produtores nesta cadeia produtiva.

A metodologia utilizada para a confecção deste trabalho foi de natureza exploratória, baseada no modelo teórico de análise de governança de cadeia global de valor (CGV). A composição de mapas e análises espaciais foi desenvolvida a partir de levantamento de dados secundários (hidrografia, topografia, climatologia, sistemas de transporte, divisões municipais e estaduais) e primários (georreferenciamento de agentes da cadeia em campo), criação de um banco de dados do projeto e posterior processamento em Sistemas de Informação Geográfica, sempre utilizando como referência o sistema de coordenadas geográficas GCS DATUM WGS 84.

A escolha das regiões de estudo foi baseada principalmente nos critérios de importância econômica e representatividade produtiva, sendo elas os Polos produtivos de tilápia do Ceará (Polo de Orós e do Castanhão), do Submédio São Francisco (BA/PE/AL), da Ilha Solteira (SP/MS), do Paraná (Norte e do Oeste) e Santa Catarina (Vale do Itajaí e entorno) (Figura 1.4). A seleção desses Polos considerou, inicialmente, a importância produtiva. A formação de uma rede de parcerias regionais embasou e fortaleceu a estratégia conceitual do projeto na definição dos Polos estudados.

Após o levantamento de informações quantitativas e geração de indicadores socioeconômicos da atividade foi realizado o diagnóstico da cadeia de valor da tilápia com entrevistas semiestruturadas com os atores da cadeia de cada região. Com visitas presenciais, participação em reuniões, visitas técnicas, feiras, além das entrevistas com os principais participantes da cadeia em cada Polo foi gerada a base primária para o presente diagnóstico.

Segundo IBGE (2015), a maior concentração da produção de tilápia no Brasil ocorre na região Sul, com 42% do total, seguido por 26% na região Sudeste, 24% na região Nordeste e 8% na região Centro-Oeste (Figura 1.5). Apesar da concentração da produção nas regiões Sul e Sudeste, são as regiões quentes as mais favoráveis ao crescimento da tilápia. Regiões com período de inverno mais severo provocam a redução do crescimento do peixe nos meses mais frios. Em compensação, os produtores dessas regiões contam com rações cerca de 10 a 20% mais baratas do que os produtores do Nordeste por questões de logística. A proximidade dos maiores centros consumidores do país também favorece os Polos das regiões Sul e Sudeste, sendo uma combinação de fatores importantes para o sucesso desses Polos.

A produção de tilápias no Paraná destaca dos demais estados, produzindo sozinho, mais do que a soma dos estados de São Paulo e Ceará, 2° e 3° maiores produtores do Brasil. Pioneiro na atividade, o Paraná tornou-se rapidamente o maior produtor da espécie desde a década de 90, inclusive com alta produção de alevinos e importação de material genético (FIGUEIREDO; VALENTE, 2008), demonstrando o empenho deste Estado em desenvolver um cultivo profissional da espécie. Nos anos de 2005 a 2007, no entanto, o sucesso da tilápia no Ceará fez deste estado o maior produtor de tilápia no período, segundo os dados do Ibama (2010).

Há, nos Polos estudados, uma grande divisão com relação a forma de cultivo. Os Polos do Ceará, SMSF e Ilha Solteira produzem tilápia em sistema intensivo nos tanques-rede instalados em reservatórios públicos. Já no norte do Paraná, 80% dos produtores produzem em viveiros escavados, mas a região, também vem se destacado pelo crescimento produtivo nos cultivos de tilápia em tanques-rede nos reservatórios do Rio Paranapanema.

O crescimento do uso de águas públicas para cultivo de peixes é a grande aposta da tilapicultura. A Tabela 1.2 apresenta o número de solicitações de áreas aquícolas e a presença de Parques Aquícolas licitados e Unidades Demonstrativas dos reservatórios da união, nos Polos estudados.

Figura 1.5. Produção anual de tilápia, por estado.
Diagnóstico da cadeia de valor da tilapicultura no Brasil

Tabela 1.2. Reservatórios da União e o número de áreas aquícolas solicitadas, parques aquícolas licitados e Unidades Demonstrativas. Situação em julho de 2016.

<table>
<thead>
<tr>
<th>Reservatórios estudados</th>
<th>Área Aquícola</th>
<th>Parque Aquícola</th>
<th>Unidade Demonstrativa</th>
<th>Total Geral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canoas I (SP/PR)</td>
<td>34</td>
<td>3</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td>Canoas II (SP/PR)</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Ilha Solteira (SP/MS)</td>
<td>88</td>
<td>3</td>
<td>5</td>
<td>96</td>
</tr>
<tr>
<td>Itaparica (BA/PE)</td>
<td>95</td>
<td>5</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Moxotó (Apolônio Sales) (BA/PE)</td>
<td>91</td>
<td>-</td>
<td>-</td>
<td>91</td>
</tr>
<tr>
<td>Souza Dias (Jupiá) (SP/MS)</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Taquaruçu (SP/PR)</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Total Geral</td>
<td>335</td>
<td>27</td>
<td>8</td>
<td>370</td>
</tr>
</tbody>
</table>

Fonte: Brasil (2013).

Já os Polos de tilapicultura do Oeste paranaense e os de Santa Catarina cultivam tilápias em sistema intensivo em viveiros excavados. Essas regiões possuem ainda características peculiares como mão de obra familiar, associativismo, maior concentração de indústrias de processamento (de todos os portes) e a entrada de grandes cooperativas no setor da piscicultura.

Todas as questões que envolvem hábitos culturais, condição ambiental, disponibilidade de recursos, disponibilidade de assistência técnica, apoio governamental regional, entre outras, promoveram diferenças nas características produtivas de cada região, influenciando desde as tecnologias utilizadas, formas de manejo, e nas soluções encontradas para as dificuldades desta atividade, ainda pioneira no país.

Nos capítulos seguintes, apresentaremos essas diferenças no diagnóstico da cadeia de valor da tilápi em cada Polo estudado.
2. Metodología
Diagnóstico da cadeia de valor da tilápicultura no Brasil

A metodologia utilizada foi de natureza descritiva e exploratória, baseada no modelo teórico de análise de governança de cadeia global de valor (CGV). A escolha das regiões de estudo foi baseada principalmente nos critérios de importância econômica e representatividade com relação a características produtivas dos polos produtores de tilápia.

As entrevistas semiestruturadas constituíram a principal fonte de dados primários. Foram 161 entrevistas, sendo: Piscicultores (83), Produtores ou fornecedores de alevinos (20), Fabricantes ou fornecedores de ração (13), Indústrias de Processamento (15), Instituições (banco, agências do governo estadual, extensão rural, associações, cooperativas) (12), Mercado (incluindo intermediários, varejo) (18).

Dados essencialmente qualitativos foram recolhidos junto aos agentes-chave da cadeia, e tratados através de análise temática a partir de codificação manual, sem a utilização de softwares de análise de dados qualitativos tendo em vista a pouca fiabilidade deste tipo de recurso.

Foi utilizado também o método de estudo de caso que permite obter uma visão aprofundada e holística de uma determinada problemática, apoiando-se em um quadro teórico (CLARO, 2004; TELLIS, 1997). De acordo com Yin (1994), um estudo de caso deve satisfazer os três princípios da análise qualitativa: descrição, compreensão e explicação. Neste método, a generalização dos resultados se origina no estudo detalhado de uma ou várias unidades de análise. Estas unidades se referem muito mais a "sistemas de interação" do que simplesmente a indivíduos ou grupos de indivíduos separadamente. Neste sentido, o resultado deve se apoiar sobre várias fontes de dados, que devem ser validadas através de triangulação com outras fontes disponíveis. Assim, foram desenvolvidos quadros teóricos formados pela teoria de Estrutura de Governança de Cadeias Globais de Valor (CGV). Esse conceito tem como objetivo central a análise da coordenação das indústrias e de seus impactos sobre os agentes nela presentes. No contexto deste estudo, a utilização deste quadro teórico visou principalmente: conhecer a configuração da cadeia produtiva da tilápicultura nos Polos estudados (agentes-chave, evoluções, gargalos), analisar os modos de coordenação exercidos entre os agentes e estudar os impactos das mudanças ocorridas na governança sobre os agentes situados a montante da CGV (produtores). A análise CGV privilegia a dinâmica das relações entre as firmas e suas formas de governança (HUMPHREY et al., 2001).
3. Diagnóstico dos Polos de Tilapicultura dos Açudes Castanhão e Orós
3.1. Aspectos gerais

3.1.1. Aspectos geográficos e climáticos

As áreas de estudo foram os Polos de tilapicultura localizados na unidade hidrográfica do Jaguaribe, que faz parte da Região Hidrográfica do Atlântico Nordeste Oriental. Esta região por sua vez é constituída pela bacia hidrográfica do rio Jaguaribe (Figura 3.1), conforme Resolução nº 32/2003 do Conselho Nacional de Recursos Hídricos (CNRH).

O Ceará possui dois polos de tilapicultura bem definidos, localizados nos açudes Castanhão e Orós, englobando 10 municípios margeados pelos respectivos açudes. Dentre esses estão os municípios de Jaguaribara e Orós como principais polos socioeconômicos da atividade.

Figura 3.1. Unidades Hidrográficas e principais cidades da RH Atlântico Nordeste Oriental.
Com uma população estimada de 8.904.459 de habitantes, em 2015 (IBGE, 2015), das quais, aproximadamente três milhões vivem na região metropolitana da capital Fortaleza, o estado do Ceará situa-se no sertão nordestino, com clima predominante o semiárido no seu interior e o tropical na região litorânea. O bioma predominante é a caatinga, com período chuvoso restrito a cerca de quatro meses ao ano e alta biodiversidade adaptada. O estado é o único a estar completamente inserido na sub-região do sertão. A sazonalidade característica desse bioma se reflete em uma fauna e flora integradas às condições semiáridas.

O sertão cearense pertence ao chamado Polígono da Seca, região reconhecida pela legislação2 como sujeita a repetidas crises de estiagens prolongadas, consequentemente, objeto de providências especiais do setor público.

Segundo Brasil (2005), os critérios de inclusão dos municípios do semiárido nordestino no Polígono da Seca são:

- Precipitação pluviométrica média anual inferior a 800 milímetros;
- Índice de aridez de até 0,5 calculado pelo balanço hídrico que relaciona as precipitações e a evapotranspiração potencial, no período entre 1961 e 1990;
- Risco de seca maior que 60%, tomando-se por base o período entre 1970 e 1990;
- Insolação média de 2.800 h/ano;
- Temperaturas médias anuais 23 a 27 ºC;
- Regime de chuvas marcadas pela irregularidade (espaço/tempo);
- Domínio do Ecossistema Caatinga (diversidade);
- Solos, maioria, arenos-argilosos, pobres em matéria orgânica;
- Cristalino – substrato dominante;
- Limitações pluviométricas e baixa retenção dos solos = rios temporários;

- Águas subterrâneas – bacias sedimentares ou cristalino, bacias sedimentares – boa vazão e qualidade;
- 57,53 % da área do NE e 40, 54 % da população do NE;
- 21,6 % do PIB do NE.

Tais características geoclimáticas propiciam grandes desafios à região, sendo o maior deles a convivência com as estiagens prolongadas. Segundo Brasil (2005), as principais características socioeconômicas desta região são:

- Persistência da pobreza, densidade demográfica crescente, diversidade ambiental;
- Principais atividades produtivas: Gado, algodão e lavouras alimentares;
- Predomínio da agricultura familiar;
- Urbanização/retenção, economia sem produção;
- Escassez de abastecimento humano.

Com o objetivo de mitigar os efeitos das longas estiagens e suas consequências para a população residente, várias barragens foram construídas no estado desde o século XIX, estocando água para usos múltiplos, sendo o principal o abastecimento humano. Os dois maiores reservatórios de água do Ceará barram o rio Jaguaribe, sendo eles: o Açude³ Orós e o Açude Castanhão, com capacidade de armazenamento, respectivamente, 2,1 e 6,7 bilhões de metros cúbicos de água. Com essa capacidade, o Castanhão é o maior açude do país.

De acordo com Funceme4, o período chuvoso no estado é fortemente concentrado em quatro meses (fevereiro-maio) e com uma grande variabilidade interanual, criando um prognóstico de cautela para os usos da água. Em 2015, apenas seis dos 133 açudes cearenses tiveram o seu volume acima de 90%, 127 apresentam volume abaixo dos 20%, inclusive o Castanhão. Em 2017, nenhum açude cearense está acima dos 29% do volume.

2 Decreto-Lei nº 63.778, de 11 de dezembro de 1968.
3 Açude, barragem e reservatório são palavras sinônicas, mas utilizamos no texto a forma mais popular de cada um.
4 Fundação Cearense Meteorologia e Recursos Hídricos.
Além da estiagem, na região do semiárido a qualidade das águas, sobretudo dos açudes, é comprometida pelo processo de eutrofização, relacionada
com o aporte de nutrientes nos corpos hídricos, principalmente o
fósforo (AGÊNCIA NACIONAL DE ÁGUAS, 2015). Fatores regionais, como
os baixos níveis de tratamento de esgoto, alto tempo de residência da
água, temperatura elevada e alta incidência luminosa contribuem para a
intensificação do processo de eutrofização nos açudes. Como consequência
pode ocorrer a floração de algas tóxicas, comprometendo as atividades que
dependem destes mananciais (AGÊNCIA NACIONAL DE ÁGUAS, 2015).

Segundo o monitoramento da Agência Nacional das Águas – ANA, realizado
em 2012, altos valores médios de fósforo total foram observados nos
açudes do estado. Como consequências diretas do alto índice de fósforo na
água que possam ser maléficas para o pescado, estão o aumento da taxa
de eutrofização seguido de diminuição do oxigênio dissolvido. Esse efeito
reduz a capacidade de suporte de um reservatório reduzindo a capacidade
de produção de peixes do mesmo, além de afetar as demais formas de
vida deste mesmo corpo hídrico. A Figura 3.2 apresenta a concentração de
eutrofico de alguns açudes do Nordeste em 2012. Lembrando que o limite de
fósforo total para águas de Classe 2 (potável) é de, no máximo, 0,03 mg/L
(BRASIL, 2005).

As características quali-quantitativas dos açudes cearenses para a piscicultura
trazem como consequência uma condição de itinerância à atividade, como
observado nos últimos anos. Produtores de tilápias em tanques-rede migram
entre açudes do estado, e até para outros estados, em busca de melhores
condições de cultivo, mais em função da quantidade da água viável para
cultivo do que sua qualidade.

A piscicultura do Ceará se desenvolveu mais intensamente com o cultivo de
tilápias nos açudes Castanhão e Orós, onde é praticada em sistema intensivo.
Segundo dados da Agência de Desenvolvimento do Estado (ADEC),
considerando o espelho de água na cota de 50% de volume dos açudes do
estado e o aproveitamento de 1% dessa área, o potencial de produção de
peixes em tanques-rede seria de 250 mil toneladas anuais, lembrando que
para isso as condições para capacidade de suporte deveriam ser perfeitas.

Figura 3.2. Concentrações médias de fósforo e trechos críticos (Portaria ANA nº
Fonte: ANA, 2015.

A capacidade hídrica dos açudes do Castanhão e de Orós é apresentada na
Tabela 3.1.

<table>
<thead>
<tr>
<th>Açude</th>
<th>Volume (m³)</th>
<th>Lâmina d’água (km²)</th>
<th>Tempo de residência (dias)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orós</td>
<td>2.100 x106</td>
<td>190,72</td>
<td>DI</td>
</tr>
<tr>
<td>Castanhão</td>
<td>6.7000⁴</td>
<td>325</td>
<td>4.145⁴</td>
</tr>
</tbody>
</table>

O aumento da produção nos açudes fez com que entre 2012 e 2013 o estado passasse da produção de 18 toneladas para 30 mil toneladas anuais de tilápias. Segundo IBGE, o Ceará produziu 30.669 t em 2013, 36.291 t em 2014 e 28.000 t em 2015 (Figura 3.3). Mesmo passando pelo 5º ano consecutivo de estiagem prolongada, tendo como consequência uma queda produtiva de 22% no último ano, a produção do estado é uma das maiores do país.

![Produção de tilápias no Ceará, toneladas](image)

Figura 3.3. Produção de tilápias no Ceará (t) nos anos de 2013, 2014 e 2015.

3.1.2. Características naturais do Polo do Castanhão

A barragem do Castanhão está localizada no município de Alto Santo, 253 km ao sul de Fortaleza, no sertão cearense. O reservatório ocupa áreas dos municípios Jaguaribara, Jaguaribe e Jaguaretama. Com capacidade de armazenar 6,7 bilhões de m³ de água em 325 km² (32.500 ha) de espelho d’água, responde sozinho por 38% do armazenamento de água do Estado do Ceará (Figura 3.4).

A delimitação dos parques aquícolas no ano de 2006 ajudou a organizar a produção estabelecendo certa ordem jurídica na barragem, que, juntamente com as condições ambientais e resistência da tilápia, contribuiu para o destaque do Polo do Castanhão como maior produtor de tilápias do estado e um dos maiores do país.

![Hidrografia da região do polo de tilápicultura do Castanhão, CE](image)

Figura 3.4. Hidrografia da região do polo de tilápicultura do Castanhão, CE.

No entanto, a infraestrutura ao redor do açude, para acesso do produtor ao recurso hídrico, é dificultada pela falta de estradas, redes elétricas e áreas de apoio. Essa condição faz com que os produtores dessem preferência por ocupar o parque aquícola da Nova Jaguaribara, às margens do município de Jaguaribara, sendo a área do açude com melhor acesso (Figura 3.5).
3.1.3. Condições naturais do Polo de Orós

O reservatório de Orós, formado pela Barragem Presidente Juscelino Kubitschek de Oliveira, é um corpo hídrico artificial planejado e construído pelo DNOCs - Departamento Nacional de Obras Contra Secas, em 1961. Localizado no trecho final da sub-bacia (Alto Jaguaribe), o açude possui um volume total de 2.100.000.000 m³ (AGÊNCIA NACIONAL DE ÁGUAS, 2015). Segundo base cartográfica da Agência Nacional de Águas (2015), o mesmo possui 190,72 km² e perímetro de 523,5 km. Abrange os municípios de Quixelô, Iguatu e Orós, sendo este último a porta de entrada do Polo produtivo da tilápia no açude e possui uma população estimada de 21.394 pessoas em 2015 (IBGE, 2015) (Figura 3.6).

Figura 3.5. Produção no Castanhão.

O monitoramento ambiental na região é inexistente no momento. Apesar da mobilização e solicitação do setor aquícola e da Câmara Setorial da Tilápia, a própria Companhia de Gestão de Recursos Hídricos - COGERH admite que as principais causas de degradação das águas de açudes do Ceará, incluindo o Castanhão, são: descarga de esgotos domésticos e industriais; afluentes de partículas de solo, contendo nutrientes em decorrência de erosão hídrica; presença de gado e de indústrias no entorno dos reservatórios. Dessa forma, estima-se que a capacidade de suporte esteja sendo negativamente afetada, elevando o potencial de mortalidade de peixes em épocas de maior calor e estiagem.

A redução das chuvas a partir de 2012 diminuiu o volume de água do Castanhão a 15,6% em setembro de 2015 chegando a 8% em julho de 2016 (Funceme). O quinquênio 2012-2016 foi o mais seco da história recente do estado, tendo sido registrado o acumulado de 1.505 mm das chuvas nesses anos, enquanto que a média histórica para apenas um ano é de 809 mm. A soma dessas condições, considerando, ainda a alta produção do açude, alta temperatura e eutrofização das águas, tem impactado a capacidade de suporte do parque aquícola.

Figura 3.6. Hidrografia da região do Polo de Orós, CE.

Da margem direita do reservatório, em direção ao açude Lima Campos, parte um túnel destinado a complementar a água necessária para irrigar as terras férteis situadas à jusante dessa última barragem. Esta informação é bastante relevante, uma vez que, essa conexão compartilha os recursos pesqueiros entre os dois açudes.
As Figuras 3.7a e 3.7b ilustram a piscicultura em tanques-rede no açude de Orós.

![Imagens 3.7a e 3.7b: Piscicultura em Orós, Janeiro 2016.](image)

3.2. Fatos históricos relevantes para o desenvolvimento dos Polos

O estímulo à piscicultura no estado do Ceará remonta ao início do século XX, com a fundação do Departamento Nacional de Obras Contra as Secas – DNOCS, em 1909, na época chamada de Inspeetoria Federal de Obras Contra as Secas - IFOCS. Com várias obras construídas entre açudes, estradas, pontes, portos, ferrovias, hospitais e campos de pouso, implantação de redes de energia elétrica e telegráficas e usinas hidrelétricas, o DNOCS foi o primeiro órgão a estudar a problemática do semiárido.

Em 1911, um Decreto definia a instalação e funcionamento de postos de observação pluvio-fluviométricos que serviram também para adotar medidas para promover a piscicultura nos açudes e nos rios intermitentes do semiárido, segundo refere o Engº. Tomás Pompeu Sobrinho, em artigo publicado na Revista do Instituto do Ceará - Tomo LXXII – 1958.

Em 1932, foi formada a Comissão Técnica de Piscicultura em Fortaleza, sob comando do cientista Rodolpho von Hering. Em dezembro de 1945, foi realizada uma reformulação da IFOCS, transformando-a em DNOCS, inserindo em sua nova estrutura o Serviço Agroindustrial e o Serviço de Piscicultura, evolução das antigas comissões técnicas criadas em 1932 (BRASIL, 2015).

Promotor do início da produção piscícola no estado, o DNOCS foi por muito tempo responsável pelo povoamento de peixes e pela estatística pesqueira do Ceará. O açude Orós, por exemplo, recebeu constantes povoamentos da estação de aleinagem de Lima Campos e passou a ser referência para a pesca artesanal do estado na década de 70, com cerca de 3.000 pescadores cadastrados nas comunidades a margem do açude. Com ajuda do DNOCS, os pescadores se organizaram em Colônia (Colônia Z13 de Orós, atualmente com 900 pescadores cadastrados), e o açude se tornou um polo produtor de camarão e peixes. Entre as principais espécies produzidas na pesca, estão: piau, traíra, tucunaré, piaba, sardinha, curimatá, pescada, tambaqui, apaiari, além de camarão.

A tilápia chegou ao Ceará na década de 50, com objetivo de povoamento dos açudes do Estado, para fomento à pesca artesanal e à segurança alimentar do sertanejo. Adaptando-se às condições ambientais, a tilápia passou a ser um dos peixes de importância na pesca artesanal cearense e, consequentemente, da culinária do sertão que é hoje uma importante região consumidora de tilápia. Na década de 70, a espécie Oreochromis niloticus é introduzida no Estado e mais tarde passa a ser a espécie mais utilizada no cultivo comercial. Em 1996 o DNOCS recebe o primeiro lote de tilápias nilóticas melhoradas pelo programa japonês na Tailândia, conhecida como tilápia chitrala da ou tilápia tailandes. Esta linhagem é ainda hoje a mais utilizada nas pisciculturas do Estado, segundo as observações deste estudo. O ganho zootécnico dessa nova genética estimulou investimentos privados em diferentes regiões do Ceará.
Diversos cursos e capacitações em aquicultura foram realizados nas instalações de piscicultura do DNOCs, com fama e participação internacional. Apesar da sua importância no desenvolvimento da piscicultura do Nordeste e do país, a exiguidade de recursos deferidos a esta instituição impediu a aceleração das obras de irrigação e dos serviços de suporte à piscicultura. Perdendo aporte de recursos, as benfeitorias dos centros de piscicultura do DNOCs vêm se deprecianto e encontram-se praticamente abandonadas em todo o estado.

A prática de povoamento e o estímulo à piscicultura como ação de mitigação no combate à fome e como atividade econômica no Ceará por muitas décadas promoveu no Estado uma cultura cultivo e também de consumo de peixes, transformando o estado em grande produtor e consumidor de tilápia.

A introdução da tilápia no açude Orós se deu entre o final da década de 80 e início de 90. No entanto, as características de cuidados parentais da espécie e o desconhecimento dos pescadores, fez com que eles imaginasssem que a tilápia comia gírinos e por isso deveria ser tóxica ao consumo humano. No entanto, a facilidade reprodutiva estimulou o DNOCs a aumentar a proporção de tilápia entre os peixes utilizados no povoamento dos açudes. No final dos anos 90, a tilápia já era a principal espécie utilizada pelo DNOCs, representando 70% dos alevinos lá produzidos.

As longas estiagens fizeram com que o açude Orós passasse 17 anos sem “sangrar”5 e muitos questionavam a viabilidade da atividade piscícola em seu leito devido à baixa qualidade da água. A falta de saneamento básico das cidades do entorno, inclusive com indústrias, hospitais, postos de gasolina, etc., enviando toda a carga orgânica (e inorgânica) para o seu leito, eutrofizando suas águas e interferindo negativamente na capacidade de suporte desse açude. Esses fatores foram durante anos considerados limitantes para a produção de peixes em tanques-rede. No entanto, a forte ligação do açude com o pescado e o desenvolvimento das técnicas de cultivo em tanques-rede, propiciou que a piscicultura acontecesse naturalmente.

Entre pequenos agricultores, pescadores, trabalhadores de construção civil, a população desta região é formada por pessoas simples, que foram estimuladas a entrar na atividade aquilícola. Essa característica inicial influencia até hoje o baixo índice tecnológico utilizado na produção de tilápias desses Polos. Ainda assim, a relativa facilidade de cultivo e o sucesso de adaptação da tilápia ao sistema intensivo, propiciaram um avanço produtivo neste Polo. Segundo o IBGE (2014), o município de Jaguaribara foi o maior produtor de tilápia (2013), com 8,6% da produção nacional da espécie.

A Figura 3.8 apresenta a linha do tempo da tilapicultura nos Polos do Castanhão e Orós.

5 Sangrar significa o escoamento de água pela barragem em um açude cheio.
6 Oficialmente, o município continua a ser chamado de Jaguaribara e dessa forma o chamaremos ao longo do texto.
3.3. Caracterização da tilapicultura

Em 2004, a conjunção de dois programas públicos: Programa Desenvolvimento Regional Sustentável (DRS), do Banco do Brasil e o Programa Produzir, do Ministério de Integração Nacional (MIN), foram instrumentos importantes como fonte de recursos para a piscicultura em tanques-rede no açude de Orós. Segundo Dr. Paulo Landin, Coordenador do Centro Vocacional Tecnológico (CVT) de Orós, ligado ao Instituto Centro de Ensino Tecnológico (CENTEC), a partir daquele ano o Banco do Brasil passou a viabilizar financeiramente os projetos de piscicultura através da liberação do PRONAF\(^7\), que foram incentivados e promovidos pelas capacitações do programa do MIN, executado pelo Serviço Nacional de Aprendizagem Rural (SENAR), estimulando várias famílias a entrarem na atividade.

O mesmo não ocorreu no Castanhão, onde em 2006 foram delimitados três Parques Aquícolas, a saber: Jaguariibe/Jaguaratama, Jaguaribara e Alto Santo, ajudando a viabilizar o crescimento da piscicultura neste açude. O total da área de espelho de água passível de ser ocupado pelos parques é de 1.704,67 ha (500,78 ha Alto Santo, 804,48 ha Jaguaribara e 399,41 ha Jaguaribe/Jaguaratama), com produção máxima anual estimada em 32.000 t de tilápias (DNOCs, 2009). Ressalta-se que as atividades de tanques-rede pré-existentes, da Associação dos Pescadores da Barragem do Castanhão e da Associação Curupati-peixe, foram incorporadas aos parques aquícolas.

De forma geral, há uma grande necessidade de ordenamento da produção em ambos os açudes, uma vez que não há estudos precisos sobre a capacidade de suporte dos mesmos. Como a condição hídrica do estado é muito sensível à ocorrência de chuva e a qualidade da água, o ordenamento e cálculo de capacidade de suporte tornam-se imperativos para a sustentabilidade produtiva da tilapicultura no Ceará. Para que não haja sobrecarga do recurso nem o baixo aproveitamento produtivo nem do potencial de geração de emprego, costuma-se trabalhar no limite estimado.

\(^7\) O Programa Nacional de Fortalecimento da Agricultura Familiar (Pronaf) destina-se a estimular a geração de renda e melhorar o uso da mão de obra familiar, por meio do financiamento de atividades e serviços rurais agropecuários e não agropecuários desenvolvidos em estabelecimento rural ou em áreas comunitárias próximas (BANCO CENTRAL DO BRASIL).
No entanto, há pouca organização setorial e não há aplicação de boas práticas de manejo, provocando inclusive piora das condições ambientais localizadas, diminuindo o potencial produtivo em tais pontos.

3.3.1. Perfil dos produtores

A característica produtiva da tilápia no Ceará é marcada pelo baixo uso tecnológico, pela participação majoritária de micro ou pequenos produtores organizados em grupos de produção informal, em sua maioria constituída por pessoas com baixa escolaridade. No entanto, há também produtores com perfil empresarial, organizados em Associação formal, com assistência técnica e grande participação nas decisões do setor.

O sistema de cultivo predominante no Ceará é baseado em tanques-rede (87%), seguido de viveiros excavados (10,6%) e os 2,4% consorciaram ambos os sistemas (Figura 3.9).

![Figura 3.9. Características do sistema de cultivo nos Polos de tilapicultura do Ceará.](foto)

Fonte: Dados obtidos pelos autores junto à Associação Cearense de Aquicultores.

A unidade de produção mais comum nos Polos de tilapicultura do Ceará é o tanque-rede quadrado ou retangular de baixo volume (entre 4 e 18 m³). O tanque-rede é geralmente confeccionado nos municípios ou pelos próprios piscicultores (Figuras 3.10a, 3.10b e 3.10c). O preço médio do tanque-rede de 6 m³ na região é R$1.000,00⁸.

⁸ Dado coletado com piscicultores do açude Orós em janeiro de 2016.

Figuras 3.10a, 3.10b, 3.10c. Tanques-rede usados nos açudes Castanhão (A) e Orós (B e C) Ceará.

As principais características das tilapiculturas dos Polos do Ceará estão demonstradas na Tabela 3.2.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo médio de atuação</td>
<td>10 anos</td>
</tr>
<tr>
<td>Parâmetro</td>
<td>Porte do produtor</td>
</tr>
<tr>
<td>Volume médio de produção (em m³ de tanque-rede)</td>
<td>Pequeno 500 à 1.000 m³</td>
</tr>
<tr>
<td></td>
<td>Médio 5.000 à 8.000 m³</td>
</tr>
<tr>
<td></td>
<td>Grande 20.000 à 30.000 m³</td>
</tr>
<tr>
<td>Origem do produtor</td>
<td>Pequeno Sertão cearense e Grande Fortaleza</td>
</tr>
<tr>
<td></td>
<td>Médio e Grande Sertão cearense e Grande Fortaleza</td>
</tr>
</tbody>
</table>
A densidade de cultivo ao final da engorda utilizada é relativamente alta no Polo de Orós, entre 100 e 150 kg/m³, superior à usada no Castanhão onde devido ao agravamento da estiagem, a maioria dos produtores passou a usar uma margem de segurança maior, aplicando a densidade de estocagem de 50 a 55 kg/m³ em 2015. Até então, a densidade era semelhante entre os açudes. A Tabela 3.3 apresenta dados anuais de produção nos dois Polos estudados.

Tabela 3.3. Número de tanques-rede, volume produção e produção anual nos Polos produtivos de Orós e Castanhão no ano de 2015.

<table>
<thead>
<tr>
<th>Polo</th>
<th>Número estimado de tanques-rede</th>
<th>Volume cultivo estimado</th>
<th>Densidade média no final do Cultivo (kg/m³)</th>
<th>Produção anual de tilápia**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castanhão (1)</td>
<td>DI*</td>
<td>750.000m³</td>
<td>55</td>
<td>25.250 t</td>
</tr>
<tr>
<td>Orós (2)</td>
<td>10.000</td>
<td>62.000m³</td>
<td>120</td>
<td>6.324 t</td>
</tr>
</tbody>
</table>

1. Estimativa da ACEAQ; 2. Estimativa Centec; * DI - Dados Insuficientes; ** A diferença de cálculo entre a densidade usada e a produção final dá-se pela mortalidade média de 15% durante o ciclo produtivo. Para Orós: 62000 x 120 x 0,85 = 6324 t; Para Castanhão: 750000 x 55 x 0,85 = 35063 t, no entanto a mortalidade do Castanhão tem sido mais elevada nesses anos de estiagem.

3.3.2. Caracterização tecnológica

Apesar de o Ceará abrigar a primeira faculdade de Engenharia de Pesca do País (na Universidade Federal do Ceará, que abre anualmente 100 vagas para o curso desde 1972), muito da tecnologia aplicada ao cultivo de tilápia foi trazida das regiões Sul e Sudeste, incluindo técnicas de manejo, alimentação e uso de linhagens melhoradas. Comparativamente com outras regiões, há uma grande carência de desenvolvimento de técnicas específicas, meios alimentares diferenciados, equipamentos e linhagens melhoradas especificamente para as condições do Ceará.

O baixo grau de escolaridade na região reflete-se na baixa utilização tecnológica. As diversas capacitações que ocorrem nos municípios envolvidos não têm sido suficientes para melhorar as práticas de manejo e melhorar o gerenciamento da produção. Grupos produtivos que possuem jovens mais empreendedores (sendo ambas as características importantes para a incorporação de tecnologias) realizam melhor o manejo e, consequentemente, obtêm melhores índices zootécnicos. De fato, há uma grande necessidade de orientação e acompanhamento técnico para os produtores. No geral, não há anotações da produção, não se realiza biometria, não há conhecimento dos parâmetros zootécnicos atingidos, estratégias de acesso ao mercado, etc. Pequenos piscicultores satisfazem-se com o resultado financeiro da produção, geralmente entre 1 e 2 salários mínimos por pessoa ao mês eximindo-se do trabalho de controlar os indicadores produtivos. No entanto, grandes e médias empresas têm investido em novas tecnologias voltadas para a produção de tilápia. A Tabela 3.4 apresenta uma síntese destas principais tecnologias utilizadas nos Polos do Ceará.

Tabela 3.4. Principais tecnologias utilizadas na produção de tilápia no Polo do Castanhão.

<table>
<thead>
<tr>
<th>Tecnologia*</th>
<th>Principais Impactos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque-rede de médio volume</td>
<td>Ganhos de escala com reflexos na redução de mão de obra, aumento da produção e otimização logística.</td>
</tr>
<tr>
<td>Classificação automática</td>
<td>Redução de custos de mão de obra, e otimização redução do manuseio e tempo de manuseio dos peixes.</td>
</tr>
<tr>
<td>Software de gerenciamento produtivo</td>
<td>Otimização do arraçamento com redução do desperdício com esse insumo, maior controle produtivo.</td>
</tr>
</tbody>
</table>

* Visto apenas em alguns exemplos do Castanhão.

A utilização de vacina é restrita aos médios e grandes produtores do Castanhão, sendo que a mesma é oferecida pela Central de Alevinagem, não havendo piscicultores que realizem a vacinação diretamente na propriedade (Tabela 3.5). A mortalidade relatada é de 20% nas épocas mais críticas, que no caso do Ceará é representado pelos meses mais quentes do ano (no caso, de dezembro a março). Ocorre uma mortalidade súbita (segundo os produtores) pela queda de oxigênio dissolvido na água após ocorrência de ventos ou de grandes baixas de volume da água, afetando tanto alevinos quanto peixes adultos. No entanto, já foram diagnosticados casos de enfermidades por *Streptococcus sp*. A infecção por *Streptococcus* é uma das principais doenças no cultivo de tilápias, acometendo todas as idades do peixe e podendo causar altas mortalidades no cardume, principalmente quando cultivados intensivamente, como no caso dos tanques-rede. Presume-se então, que a falta de vacinação e de diagnóstico são gargasais importantes do Polo.

Tabela 3.5. Principais características dos tilicultores dos Polos do Castanhão e Orós.
Parâmetros e Descrições

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principais tipos de tanque-rede</td>
<td>Quadrado ou retangular (4 a 18 m³)</td>
</tr>
<tr>
<td>Questões ambientais</td>
<td>Qualidade da água (eutrofização, estiagens prolongadas com baixa de volume, conflito de uso)</td>
</tr>
<tr>
<td>Sazonalidade ao longo do ano</td>
<td>Verão (altas temperaturas)</td>
</tr>
<tr>
<td>Monitoramento da água</td>
<td>Apenas por poucos produtores</td>
</tr>
<tr>
<td>Controle da produção</td>
<td>Apenas por poucos produtores</td>
</tr>
<tr>
<td>Duração do ciclo (com juvenil de 35 g e peso médio de abate de 800 g)</td>
<td>180 dias</td>
</tr>
<tr>
<td>Densidade final (Kg peso vivo/m³)</td>
<td>55 kg / m³ (Castanhão) e 120 kg/m³ (Orós)</td>
</tr>
<tr>
<td>Uso de vacina</td>
<td>Sim. Porém constitui ainda uma tecnologia em fase inicial de assimilação pelos médios e grandes piscicultores</td>
</tr>
<tr>
<td>Taxa de conversão alimentar</td>
<td>1,7 (para o peso médio entre 800g e 1kg)</td>
</tr>
<tr>
<td>Utilização de cadeia do frío</td>
<td>Sim. A maioria apenas com gelo durante o transporte.</td>
</tr>
</tbody>
</table>

A tilápia despescada é transportada no gelo em isopor ou em caminhões frigoríficos. O gelo é produzido nos municípios produtores, mas pode ser trazido pelo atravessador. Em Orós há seis fábricas de gelo e em Jaguaribara, duas (Figuras 3.11a e 3.11b). O gelo é comercializado com preço médio de R$0,15 o quilograma e usado na proporção de 1:1 (1 kg de gelo para 1 kg de peixe).

Em 2014, a ACEAQ em parceria com a SEMACE, SEH/COGEH, Instituto Federal do Ceará (IFCE), sob a tutela da Câmara Setorial da Tilápia, lançou o Manual de Boas Práticas de Manejo para a produção de tilápias no estado do Ceará. Apesar disso, a falta de treinamentos e de ações de extensão aquícola dificulta a aplicação do Manual.

Principais dificuldades técnicas identificadas nos cultivos de tilápia dos polos do Castanhão e Orós:

- Falta de escala de produção dos empreendimentos;
- Falta de automação da produção;
- Falta de rotinas baseadas em Boas práticas de manejo;
- Programas de sanidade aquícola;
- Destinação de resíduos sólidos;
- Baixo nível tecnológico dos produtores ou falta de adoção de tecnologias básicas, como o monitoramento da água e biometrias;
- Genética – Identificação das linhagens usadas e melhoramento específico para as condições ambientais do estado.

3.3.3. Forma de comercialização e agregação de valor da tilápia cearense

A tilápia cearense é comercializada na maioria das vezes, eviscerada em gelo. No entanto, o primeiro selo do serviço de inspeção sanitária no estado foi entregue em março de 2016 ao Frigorífico Chave Pescados, em Jaguaribara (SIE Nº 630). A empresa produz 80% da tilápia que processa, não tendo assim muita importância como um mercado para os demais produtores da região. Uma outra instalação frigorífica presente em Jaguaribara pertence à APLAGES – Associação dos Produtores e Processadores de Peixes de Jaguaribara e Lages (CE). Construída com apoio do extinto Ministério da Pesca e Aquicultura e gerenciada pela associação, nunca recebeu o selo de inspeção por necessitar de reformas para a aprovação do projeto. No entanto, esse frigorífico compra o pescado de vários produtores do Castanhão (maioria pequenos produtores), realiza evisceração e alguma filetagem (10%).

![Figuras 3.11a e 3.11b. Fábricas de gelo em Orós.](foto)
Em Orós, há um processo avançado para conseguir o SIE para uma Unidade de Higienização, e existem outras instalações de processamento nos municípios produtores, mas, ainda sem o selo de inspeção sanitária (Figuras 3.12 e 3.13).

A ACEAQ e a Câmara Setorial do Pescado do Ceará propuseram quatro modelos de plantas para tilápia (entrepósitos de tilápia), pré-aprovadas pela Secretaria de Agricultura do Ceará para o SIE, para que o empreendedor que desejar investir tenha uma noção do que irá construir. Os modelos pré-aprovados com SIE estão sob a tutela do Governo Estadual e correspondem a: Modelo 01 – Evisceração; 02 – Evisceração, postas e filés frescos; 03 – Evisceração, postas e filés frescos e congelados; 04 – Evisceração, postas e filés frescos e congelados, mais CMS e outros produtos.

No momento, a realidade, ainda é a ocorrência de evisceração às margens dos açudes, em condições sanitárias não adequadas e fora das normas em vigência (RIISPOA9) (Figuras 3.14a e 3.14b).

9 Regulamento da Inspeção Industrial Sanitária de Produtos de Origem Animal.
Como cultura local, as vísceras foram por muitos anos jogados nas águas de cultivo. Com a evolução da produção no estado, capacitações e orientações técnicas, essa prática vem sendo banida aos poucos. Soluções diferentes foram encontradas entre os açudes.

No Castanhão, há o estímulo para se extrair óleo das vísceras com o apoio de um produtor e comprador de óleo de vísceras para a produção de biodiesel no Polo da Petrobras de Quixadá. Dessa forma, grande parte dos produtores do Castanhão vende as vísceras ou o óleo produzido na propriedade, através de práticas simples de cozimento (Figuras 3.15).

Figuras 3.15. Produção de óleo a partir de vísceras da tilápia. A) Produção em uma piscicultura do Castanhão; B, C e D) Instalações de uma empresa de extração de óleo de vísceras de Jaguaribara.

Além dessa iniciativa, produtores de Jaguaretama organizados em Cooperativa (Curupati Peixes, com 40 cooperados) possuem um convênio direto com a Usina da Petrobras, em Quixadá.

Segundo a empresa de extração de óleos, as vísceras da tilápia pesam aproximadamente 10% do peso da tilápia e 10 quilogramas de vísceras podem produzir até 3,3 litros de óleo. O preço de venda das vísceras varia com relação ao tipo de comprador, sendo de R$1,40/litro para Petrobras e R$ 1,50/litro, para fábricas de ração (lembrando que o litro do óleo de soja custa em média R$ 2,00 no varejo a preços de 2015 – Fonte: Dados levantamento de campo).

Para a empresa que produz o óleo de forma industrial, a logística de coleta do produto nas pisciculturas é bastante dificultada pelas distâncias e falta de infraestrutura. Esta empresa processa 70 a 80 t de vísceras por mês, quantia que representa 40% das vísceras das tilápias produzidas no Castanhão.

No açude Orós, a produção e venda do óleo das vísceras não encontra a mesma facilidade. Neste Polo algumas comunidades construíram uma caixa de concreto semelhante a grandes cisternas onde armazenam as vísceras que depois é coletada por caminhão contratado e levadas ao aterro sanitário da região. O valor da carreta é de R$ 400,00 por viajem.

O baixo IDH da maioria das cidades do sertão cearense orientou o hábito alimentar da população local que consome com frequência carne seca (salgada ou não) ou fresca devido à ausência de refrigeradores elétricos em muitas residências. Para o pescado, esse hábito não é diferente. O Ceará é um grande produtor de peixe e camarão secos. No caso específico da tilápia, o consumo de produtos congelados, ainda é afetado por esse hábito, sendo a tilápia fresca (resfriada em gelo) a principal forma de venda.

Em geral, há pouca agregação de valor à tilápia cearense. Apesar haver constantes capacitações em ambos os Polos, o piscicultor que processa seus peixes relata ter dificuldade em comercializar os produtos processados, tampouco há apoio que viabilize tal comercialização. O pouco filé produzido na região é comercializado localmente, mas há desconhecimento sobre como acessar o mercado com esses produtos.
Alguns exemplos de agregação de valor e utilização de subprodutos estão nos artesanatos com pele de tilápia produzidos pela APLAGES10 (Figura 3.16a) e os filés, bolinhos e buchada de tilápia produzidos no Sítio Jurema11, em Orós (Figura 3.16b).

Figura 3.16a e 3.16b. Agregando valor a tilápia do Ceará. A) Artesanato com couro curtido na APLAGES do Castanhão; B) Produção de filé pela Associação Sítio Jurema, Orós.

Os produtos processados no Sítio Jurema são feitos em cozinha industrial e possuem autorização de venda local.

É importante ressaltar o impacto social do elo de processamento, tendo em vista ser uma atividade que demanda um grande efetivo de trabalhadores, geralmente da região. Além de gerar empregos diretos, unidades de processamento também viabilizam parcerias com indústrias locais de ração por meio do fornecimento de óleo e farinha obtidos dos resíduos de processamento. Essa parceria gera importantes efeitos de encadeamento que resultam não apenas em ganhos econômicos, mas também ambientais, uma vez que os resíduos deixam de ser despejados ao meio ambiente.

Além disso, o processamento facilita o acesso às políticas públicas, como a que ocorre com uma parte do pescado processado da região que é destinado a merenda escolar por meio do Programa Nacional de Alimentação Escolar - PNAE. Tal programa já foi acessado na região, tanto pela APLAGES, em Jaguaribara, quanto pela Associação das mulheres produtoras do Sítio Jurema, em Orós. Por aproximadamente oito anos foram fornecidos para escolas públicas locais bolinha de tilápia, filé ou carne de tilápia moida através de um convênio Prefeitura/Conab/Ministério da Ação Social. Todavia, a gestão desse convênio geralmente é fragilizada pela ação pouco participativa do setor, extinguindo-se em ambos os Polos na mudança dos gestores.

3.3.4. Mercado

A comercialização da tilápia produzida nesses Polos ocorre diretamente pelo produtor ou por intermediários. Alguns produtores realizam a distribuição (atacado) com caminhonetes, caminhões ou motos, dependendo do porte. Alguns “pronañños” de Orós possuem o PRONAF-comercialização, uma categoria de financiamento que permite comprar veículos utilitários para esse fim.

No Castanhão, há um expressivo número de grandes distribuidores que vêm de Fortaleza para comprar a tilápia e revendê-la nos grandes mercados da capital, entre eles o mercado Carlito e o novo Mercado de Peixes, na praia do Mucuripe. Há também dezenas de pequenos intermediários que realizam a comercialização, sendo o seu mercado alvo pequenos varejos do interior do estado, principalmente feiras e peixarias.

10 Assoiciação dos produtores e processadores de peixes de Jaguaribara e Lages.

11 Sítio Jurema é o nome de uma das comunidades no entorno do reservatório de Orós, organizadas em Associação de produtores.
Os principais mercados da tilápia produzida no sertão cearense são o próprio sertão e a capital, Fortaleza. Com concentração de venda para Fortaleza das tilápias produzidas no Castanhão. Outras capitais vizinhas, como São Luiz, MA, João Pessoa, PB, e Natal, RN também consomem a tilápia produzida no Ceará.

O mercado Carlito é o principal atacadista de tilápia do Ceará. Possui 15 boxes com câmaras frigoríficas para armazenamento de 3 a 5 toneladas cada, que comercializam entre 30 a 40% de toda produção do estado, numa estimativa de comercialização diária de 50 t de tilápia (de 2 a 4 t/dia/box). O preço de compra da tilápia no mercado vai de R$ 6,50 a 7,50/kg (para tilápias de 800 – 1000 g) e de venda R$ 8,50. Segundo informações fornecidas por um intermediário, os aumentos são sempre repassados para o consumidor. Com a redução produtiva decorrente da crise hídrica do estado, a tilápia ali comercializada também vem de outros estados, principalmente Bahia (Sobradinho e Paulo Afonso).

O estado do Ceará promove uma série de ações que dificultam a venda no varejo cearense de tilápias produzidas em outros estados. A principal delas é o Cadastro de Rastreamento de Transporte Intermunicipal (CRTI). Esse cadastro é obrigatório para produtores e distribuidores que trabalham com a tilápia no estado. Cada vez que um lote de tilápia é despescado, o produtor emite uma guia do bloco CRTI. O distribuidor que compra a tilápia recebe essa guia preenchida e na hora de vender também emite a sua guia de CRTI - distribuidor. O varejo, se fiscalizado, precisa apresentar essa guia. Essa rastreabilidade obriga turba auxiliar o controle de venda de tilápia no estado e representa uma barreira à entrada de tilápias sem a documentação sanitária (SIF) vindas de outras regiões. Não há restrição para transportar pescado entre estados desde que destinados a um frigorífico com SIF no destino, no entanto, a falta de frigoríficos de tilápia com condição de emitir este certificado é gargalo em todos os Poços.

O CRTI serve de base para coleta de dados setoriais, já que os blocos são de controle da SEAPA (Secretaria Estadual de Agricultura, Pesca e Aquicultura, antiga SEAP) e os produtores entregam os mesmos preenchidos com seus dados de produção/comercialização. No momento, o estado procura aprimorar a análise de dados através de sua informatização.

Geralmente, o transporte que leva a tilápia para um determinado mercado, retorna à origem com outras espécies de peixe. As Figuras 3.17a e 3.17b apresentam exemplos de caminhões de transporte de tilápia em Orós.

O mercado da tilápia no Ceará nunca foi um grande gargalo do setor. Há uma grande demanda pela tilápia, que entra como peixe nobre nos mercados da grande Fortaleza. Um prato com tilápia, nos restaurantes de Fortaleza, em 2015, custava, em média, R$ 80,00, o mesmo preço de um prato de salmão ou de bacalhau.

Figuras 3.17a e 3.17b. Caminhões de transporte de tilápia em Orós.

Esse status atual foi construído com ajuda dos produtores pioneiros em sistema intensivo que fizeram uma grande divulgação da tilápia. Posteriormente, a ACEAQ, com apoio da Secretaria de Pesca e Aquicultura e Agência de Desenvolvimento do Estado (ADECE), coordenou uma pesquisa de mercado em 2013 que serviu de base a um plano de marketing para a tilápia cearense. Foram realizados investimentos em outdoor, programas de rádio, festivais gastronômicos, etc.

A Associação de Bares e Restaurantes de Fortaleza (ABRASER) também abraçou a causa e fizeram da tilápia o produto principal do festival gastronômico do estado. Testemunhos de donos de restaurantes da praia do Futuro dizem que a tilápia já representa 60% entre os demais peixes utilizados em seus pratos.
O grande gargalo do setor é a ausência de indústria de processamento e de aproveitamento de resíduos. Esse gargalo enfraquece o mercado de filés. Não há graxaria no estado, inviabilizando a produção de filé, pois os resíduos do processamento seriam um problema para as indústrias. Por outro lado, a margem de lucro para o produtor acaba sendo beneficiada por não precisar negociar preços com frigoríficos. Nas regiões onde estes estão presentes, em geral há pressão por menores preços pagos ao produtor.

Outra proposta a ser trabalhada pelos produtores cearenses é o abastecimento a nichos de mercado. Por exemplo, por vezes, regiões de praia procuram por peixes maiores. A produção de tilápias de 2 a 3 kg poderia atender a esse mercado.

No que se refere aos compradores, não há uma concentração em um ou poucos clientes. Em geral os produtores possuem uma quantidade razoável de compradores, variando de 5 até 60 (Tabela 3.6). A característica dos intermediários que atuam neste Polo varia entre um comerciante pequeno (até 5 toneladas/lote) a um de médio porte (até 12 toneladas/lote). Os pequenos intermediários comercializam pequenas quantidades em caminhonetes ou motos e, apesar de exigir um esforço de busca contínua por novos compradores, esse quadro é positivo para os piscicultores no que se refere à redução de risco de calote e melhoria do poder de negociação, uma vez que, estes compradores têm um poder de barganha limitado. Alguns médios e grandes produtores possuem caminhão frigorífico próprio, transportando a sua produção e de outros piscicultores para atacadistas da capital. O gelo é por conta do distribuidor.

Tabela 3.6. Principais características do mercado de tilápias nos Polos do Castanhão e Orós.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal forma de apresentação da tilápia (vendida pelo produtor)</td>
<td>Eviscerada no gelo</td>
</tr>
<tr>
<td>Preço médio de venda pago ao produtor (peixe eviscerado)*</td>
<td>R$ 6,00/kg</td>
</tr>
<tr>
<td>Custo médio de produção (eviscerado)*</td>
<td>R$ 5,00/kg</td>
</tr>
<tr>
<td>Concentração de compradores</td>
<td>Baixa</td>
</tr>
<tr>
<td>Frequência de venda de tilápias</td>
<td>Semanal</td>
</tr>
<tr>
<td>Existência de contratos com compradores</td>
<td>Não. Apenas acordos verbais.</td>
</tr>
<tr>
<td>Localização dos compradores</td>
<td>± 500 km de raio. Cidades do Interior do CE, PB, MA, PI, Fortaleza e capitais.</td>
</tr>
<tr>
<td>Principais compradores</td>
<td>Pequenos</td>
</tr>
<tr>
<td></td>
<td>Médios e Grandes</td>
</tr>
</tbody>
</table>

* Valores referentes a 2015.
3.3.5. Infraestrutura do Polo

Insumos

Quanto ao suprimento de insumos, o estado do Ceará é possui três fábricas de ração para tilápia: Nutreco, Integral Mix e Polinutre. Além dessas fábricas de ração, presentes no estado, outras empresas possuem escritórios de representação, contabilizando mais de 14 marcas disputando o mercado no estado. Dessa forma, 70% da ração usada nos Polos do Ceará vêm de outros Estados.

Oito produtores de alevinos, incluindo as estações do Governo do Ceará, disseminam tilápia melhorada por diferentes programas. A tilápia Chitalada ou tailandesa é a linhagem mais utilizada nos cultivos, mas vem sendo substituída pela GIFT (Genetic Improvement of Farmed Tilápia) oriunda de diferentes programas de melhoramento. Essa substituição vem ocorrendo devido ao interesse de grandes centrais de alevinagem no mercado nordestino. Dessa forma, algumas centrais que trabalham com melhoramento genético, geralmente usando a GIFT como base genética do melhoramento, vêm se instalando na região.

Os mapas de localização dos agentes responsáveis por insumos no estado do Ceará estão representados na Figura 3.18a e 3.18b.

Figura 3.18a. Localização dos principais agentes de insumos da cadeia de tilapicultura de Orós, CE.
Assistência Técnica e Extensão Rural

A assistência técnica e extensão rural no estado do Ceará são realizadas pela Ematerce (Empresa de Assistência Técnica e Extensão Rural do Ceará) a qual está distribuída em 70 municípios (Figura 3.19). As rodovias da região são federais e estaduais e apresentam condições logísticas satisfatórias para o acesso às produções de tilápias no reservatório de Orós por parte de técnicos de extensão rural. Apesar da infraestrutura montada no estado, os 435 funcionários (179 técnicos agrícolas nível médio e 256 técnicos de nível superior) do quadro atual não são suficientes para atender os produtores rurais e suas especialidades no estado do Ceará.

Figura 3.19. Conjunto de agentes da cadeia de produção da tilápia no estado do Ceará e assistência técnica e extensão rural.

A falta de assistência técnica ficou evidente no momento de crise hídrica dos últimos anos quando uma grande mortalidade de tilápias afetou, principalmente os pequenos produtores, que não possuem assistência nem
utilizam boas práticas. Sem controle produtivo, não conseguiram prever a possibilidade de mortalidade. Já os produtores que utilizam tecnologias de manejo, como análise de água e biometria, começaram a migrar seus tanques-rede para áreas mais propícias dentro do açude e não tiveram perdas significativas. Apesar disso, a prática de transposição de tanques-rede sem regularização dos órgãos competentes não é indicada nem deve ser incentivada no Brasil, uma vez que, o ordenamento dos parques aquícolas requer estudos avançados que avaliam não somente a viabilidade técnica, mas também a conservação dos recursos hídricos, edáficos e a gestão dos usos múltiplos das águas.

As unidades da Ematerce mais próximas do reservatório de Orós são Icó e Igatu, sendo que a primeira está alocada no Centro Gerencial do DNOCs, DNOCs, como apresentado na Figura 3.20.

As Figuras a seguir revelam a situação consequente da falta de assistência técnica nos polos produtivos do Ceará.

Figuras 3.21a, 3.21b, 3.21c e 3.21d. Levantamento de tecnologias junto aos produtores do Castanhão. Fonte: Dados obtidos pelos autores junto a Associação Cearense de Aquicultores.

3.3.6. Financiamento da atividade

Em termos de financiamento da atividade, há uma diferença entre os pequenos produtores, que possuem PRONAF e os médios e grandes piscicultores que utilizam recursos próprios, não recorrendo a bancos ou demais entidades financeiras para cobrir o investimento e custeio da produção (Tabela 3.7). Dentre os fatores que justificam essa situação nos polos produtivos do Ceará, os principais são a falta de garantias por parte
dos piscicultores e dificuldade em cumprir exigências burocráticas, como o licenciamento ambiental.

Tabela 3.7. Principais características produtivas dos tilapicultores do Castanhão e Orós.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilização de financiamento bancário</td>
<td>Não / PRONAF em Orós</td>
</tr>
<tr>
<td>Status da área em terra</td>
<td>Própria</td>
</tr>
<tr>
<td>Assistência técnica pública</td>
<td>Não</td>
</tr>
<tr>
<td>Participação em organização produtiva</td>
<td>Sim</td>
</tr>
</tbody>
</table>

3.3.7. Particularidades da produção de cada Polo

Castanhão

A produção de tilápias no Castanhão é representada por piscicultores de duas origens diferentes: oriundos da “velha” Jaguaribara e os piscicultores vindos da região de Fortaleza.

As cessões de Parques Aquícolas são divididas entre onerosas e não onerosas. As não onerosas são preferencialmente de comunidades ribeirinhas ou no caso de atingidos pela barragem, as onerosas são abertas à disputa por qualquer cidadão brasileiro. Existem diversas cessões em nomes de produtores que disputaram e ganharam a licitação, e não são da cidade, existem cessionários não onerosos que estão produzindo com outras pessoas, sejam elas da região ou não. Os produtores, em sua maioria, exerciam a agricultura de subsistência, mas foram beneficiadas com a cessão de outorga como incentivo à nova vida da população desalojada, exercendo a piscicultura com base no aprender-fazendo. Muitos preferiram não entrar no negócio e “alugam” a sua área para outros piscicultores, inclusive empresários vindos de outras regiões do Estado. As integrações (em forma de aluguel) que vem ocorrendo viabilizam a produção local, geram emprego e renda e possui instrumento avaliado no âmbito jurídico do MPA.

Os piscicultores de Jaguaribara se agruparam em grupos produtivos informais, geralmente entre parentes, que com o tempo e o sucesso produtivo, conseguiram ficar na atividade e conseguiram melhorar suas condições de vida e a de suas famílias. Segundo a Secretaria de Agricultura, Pesca e Aquicultura do Estado do Ceará, existem 12 associações de pequenos e médios produtores e uma cooperativa de produtores – a Curupati - Peixes.

A partir de 2012, o estado foi afetado por estiagem prolongada que ainda perdura, ano influenciado pelo fenômeno climático “el Niño”. Todos os açudes do estado foram afetados e em alguns a atividade piscícola ficou inviável. Nesse momento, houve uma grande migração de médios e grandes piscicultores desses açudes para o Castanhão, que também foi afetado mais tarde. A chegada de um grupo produtor organizado alterou a dinâmica de produção no Castanhão. Contudo, diante da situação atual, alguns produtores estão deixando a barragem em busca reservatórios em melhores condições hídricas, migrando para estados como Maranhão e Pernambuco.

Sustentabilidade da Produção no Castanhão

Em 2015, haviam 685 outorgas de cessão de uso das águas da União no Castanhão, somando-se as onerosas e não onerosas, mas estima-se que na prática devam existir apenas 250 cessões em produção nesse ano. Com a necessidade de se estimar a produção atual e a capacidade de suporte deste reservatório, que tem importante variação volumétrica, as seguintes organizações foram mobilizadas: Agência Nacional das Águas - ANA, Secretaria de Recursos Hídricos do Ceará – SRH e Companhia de Gestão de Recursos Hídricos - COGERH.

Com a insegurança produtiva e a densidade de estocagem reduzida, a produção do Castanhão de 2015 foi a mais baixa dos últimos cinco anos e, segundo o setor (diferente da estatística do IBGE, que foi de 19 mil t) ficou em 25.250 t, gerando uma receita em torno de R$ 151 milhões considerando apenas a venda pelo produtor. A Figura 3.22 apresenta os valores totais dos polos do Ceará entre os anos de 2011 e 2016.

Atualmente, a atividade envolve cerca de 3.000 pessoas em torno da cadeia produtiva da tilápia no açude de Orós. São 450 famílias organizadas em 37 grupos produtivos em 18 comunidades ribeirinhas, somando aproximadamente 10.000 tanques-rede em 2015 e uma produção média mensal estimada de 620 t. Estima-se que 80% da renda dessas comunidades venham da criação de tilápia (BARBOSA, 2015). A produção deste Polo tem se mantido na média de 7,5 mil toneladas/anos, que considerando o preço médio ao produtor de R$ 6,00/kg, gera uma receita anual bruta aproximadamente de R$ 45 milhões.

O custo de produção da produção da tilápia em Orós é em média R$ 5,00/kg, que assim como no Castanhão, são os mais altos entre os demais polos produtivos da tilápia. Esse fato se deve a duas razões principais: ausência de boas práticas e controle dos parâmetros zootécnicos, o que propicia um cálculo mais acurado do fornecimento de ração e o preço da ração praticado nesse Polo, com valor até 20% maior do que os demais polos produtivos de tilápia.

Sustentabilidade da Produção em Orós

Segundo dados da Companhia de Gestão dos Recursos Hídricos (DANTAS et al., 2011), a aquicultura é responsável por 1% das outorgas de água concedidas nesta bacia. Os outros 99% foram concedidos para a irrigação/agricultura (75%), consumo humano (19%) e indústria (5%).
Em relação aos locais onde os tanques-rede estão instalados no reservatório, verifica-se em alguns casos, insuficiente renovação hídrica, ora por estarem em braços afastados do eixo do reservatório, ora por estarem no eixo do reservatório, porém afastados da calha original do rio Jaguaribe (Figura 3.23).

Os baixos níveis dos reservatórios do Ceará requerem planejamento de realocação das áreas aquícolas já implantadas. Tendo em vista a realidade de escassez hídrica nesta região, locais do reservatório com 6 metros de profundidade ou mais e que estejam próximos à calha original do rio Jaguaribe e afluentes são os mais desejados, considerando a altura média dos tanques-rede utilizados (1 a 2 metros de altura).

Outra questão que vem impactando negativamente o reservatório é a evisceração dos peixes nas suas margens. Esta prática, além de poluir a água e não estar de acordo com normas de segurança sanitária, torna o local uma fonte de atração de aves, as quais são potenciais transmissoras de doenças.

3.4. Governança e estrutura da cadeia de valor da tilápia

3.4.1. Estrutura da cadeia de suprimentos

Com relação às instalações para produção de insumos e para a industrialização da produção, a falta destas representa um dos principais gargalos dos polos produtivos do Ceará. A ausência de unidades públicas e privadas de processamento de pescado constitui uma das principais carências em termos de infraestrutura, assim como observado em outros polos do Nordeste brasileiro.

O estado possui três fábricas de ração para tilápias e oito estações de alevinagem, sem contar com as estações públicas do DNOCS que fornecem aos produtores alevinos a preço 50% abaixo do valor de mercado. Muitos produtores de alevinos consideram que este fato é um dos que impede o desenvolvimento e profissionalização dos produtores de alevinos no estado, já que é inviável competir com o poder público.

O tanque-rede é um dos poucos equipamentos produzidos nos polos do Ceará. No geral, os produtores compram a tela e constroem a estrutura na própria fazenda. No entanto, vale ressaltar que parte dos insumos — sobretudo as telas — vêm das regiões sul e sudeste do Brasil.

A Tabela 3.8 reporta a origem dos insumos e equipamentos utilizados nos polos de tilapicultura do Ceará.

As regiões sul e sudeste do Brasil também são responsáveis por fornecer outros insumos e equipamentos como medicamentos, classificador de peixes e softwares para gestão da produção.

Figura 3.23. Açude de Orós e hidrografia que o circunda.
Tabela 3.8. Matriz de origem dos insumos e equipamentos utilizados nos Polos do Castanhão e de Orós

<table>
<thead>
<tr>
<th>Insumo/Equipamento</th>
<th>Local de produção do insumo ou equipamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Medicamentos</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Classificador de peixes</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Software de gestão de produção</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Tanque-redes</td>
<td>Dentro do Polo (Porém a tela vem de fora do Polo)</td>
</tr>
<tr>
<td>Gelo</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Alevinos</td>
<td>Dentro e fora do Polo</td>
</tr>
</tbody>
</table>

Segundo dados dos entrevistados, aproximadamente 70% da ração consumida no Polo vêm de indústrias de fora, na sua maioria localizada em outras regiões do nordeste. Importante mencionar que a grande maioria dos ingredientes das rações processadas no estado e mesmo em outras regiões do NE, vem do CO, SE e Sul.

Maioria das fábricas está nas regiões sul e sudeste

<table>
<thead>
<tr>
<th>Insumo/Equipamento</th>
<th>Local de produção do insumo ou equipamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Medicamentos</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Classificador de peixes</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Software de gestão de produção</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Tanque-redes</td>
<td>Dentro do Polo (Porém a tela vem de fora do Polo)</td>
</tr>
<tr>
<td>Gelo</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Alevinos</td>
<td>Dentro e fora do Polo</td>
</tr>
</tbody>
</table>

A maioria dos tanques-redes é produzida no Polo, porém utilizando insumos vindos do sul e sudeste (ex: telas).

A maioria das indústrias têm representantes locais que fazem a distribuição por barco dentro dos açudes. Mas a distância e a dificuldade do transporte chega a encarecer a ração em 3%.

3.4.1.1. Descrição detalhada sobre a ração utilizada nos Polos

O boom produtivo do Castanhão em 2011 e 2012 atraiu mais de dez empresas de ração a disputar o mercado local. Na época, eram quatro fábricas de ração instaladas no estado, mas não conseguiram abastecer a grande demanda daqueles anos. Com a crise hídrica e a forte concorrência, uma das fábricas do estado fechou as portas. No entanto, ainda hoje permanecem 14 fornecedores na disputa por clientes no Ceará. O dinamismo do setor e o mercado aquecido de tilápia tem auxiliado o crescimento dessas empresas, declarado de 38% ao ano, impulsionado principalmente pela tilápia e também pelos equinos (no caso das indústrias que também produzem ração para essa categoria).

No geral, as fábricas de ração produzem uma gama diversificada de produtos. Em uma das empresas entrevistadas, eram 75 produtos entre linhas de ração para aves, pet, equinos, suínos, camarão e peixes. Porém, a ração para tilápia representa 35% do volume total de ração produzido. Esta fábrica emprega cerca de 250 pessoas, o que coloca em evidência a importância social da indústria de insumos dentro de qualquer polo de produção – em especial numa região pobre como o sertão cearense.

Geralmente, essas indústrias têm representantes locais que fazem a distribuição por barco dentro dos açudes. Mas a distância e a dificuldade do transporte chega a encarecer a ração em 3%.

A maioria das marcas oferece assistência técnica para os compradores, tentando obter uma fidelidade dentro dessa disputa. A dificuldade em obter uma assistência técnica acessível faz com que de fato os piscicultores se fidelizem a determinadas marcas. A relação de confiança e a grande concorrência podem ser observadas ainda na forma de pagamento da ração no Polo do Castanhão: produtores têm prazo de até 4 meses, o maior prazo observado no estudo.

A situação dos produtores de Orós é um pouco diferente. Há também uma concorrência entre diferentes fornecedores, mas em menor número de representantes comerciais e há uma clara concentração de uma marca que representa 65% da ração consumida no Polo.

13 Taxa de Conversão Alimentar é representada por quantidade de ração em kg para formar 1 kg de peixe. No caso, 1,7 representa 1,7 kg de ração para formação de 1 kg de tilápia.
No Brasil, estabeleceu-se um paradigma de que a ração de engorda para tilápia deve ter a concentração proteica de 32%. No entanto, a concorrência para a espécie faz com que várias fábricas invistem em pesquisa e aos poucos, observa-se a entrada de novos produtos que se preocupam com o teor proteína: lipídios, enriquecimento vitamínico, probióticos e prebióticos, entre outras propriedades que possam aprimorar a eficiência da ração. De fato, atualmente, a conversão alimentar das rações utilizadas nos Polos do Ceará é de 1,7 para a produção de peixes entre 800 g a 1 kg.

As características da ração utilizada nos Polos do Ceará e seu preço médio estão citadas na Tabela 3.9, a seguir.

Tabela 3.9. Características e preço da ração utilizada nos Polos do Ceará.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Castanho</th>
<th>Orós</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preço médio da ração de finalização</td>
<td>R$ 1,85/kg</td>
<td>R$ 2,00/kg</td>
</tr>
<tr>
<td>Forma de apresentação</td>
<td>Saco de 25 kg de ração extrusada.</td>
<td>Saco de 25 kg de ração extrusada.</td>
</tr>
<tr>
<td>Teor de Proteína Bruta para engorda</td>
<td>32 %</td>
<td>32 %</td>
</tr>
<tr>
<td>Transporte</td>
<td>Pela distribuidora (barco)</td>
<td>Pela distribuidora (barco)</td>
</tr>
<tr>
<td>Prazo pagamento</td>
<td>15 a 120 dias</td>
<td>28 dias</td>
</tr>
<tr>
<td>Oferece também Assistência Técnica</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>Fidelidade</td>
<td>Média</td>
<td>Alta</td>
</tr>
</tbody>
</table>

3.4.1.2. Descrição detalhada sobre os produtores de alevinos de tilápia na região

O Ceará produziu um total de 29.905.000 alevinos no ano de 2014 (IBGE, 2014), sendo que a tilápia representa 99% deste volume (Tabela 3.10). O Ceará é o estado onde se verifica uma maior concentração da produção de tilápia, em comparação com outras espécies, as quais respondem por menos de 1% da produção. As centrais de alevinagem cearense estão dispersas em diferentes regiões do estado. No entanto, os dois maiores municípios produtores de alevinos, Icó e Orós, estão próximos aos dois maiores Polos de tilapicultura do estado - os reservatórios de Castanhão e Orós.

Pode-se dizer que o abastecimento de alevinos atende a demanda local. Ao longo dos últimos 10 anos, além da estrutura de produção de alevinos do DNOCS houve um aumento do número de centrais de alevinagem instaladas no estado, atendendo ambas as regiões produtoras.

A característica de uso da fase jovem é semelhante nos polos, onde 80% das vendas concentra-se em alevinos de até 3 g e apenas 20% refere-se a juvenis a partir de 10 g, conforme demonstrado na Tabela 3.11.

<table>
<thead>
<tr>
<th>Município</th>
<th>Produção (milheiros)</th>
<th>Participação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icó</td>
<td>9.161</td>
<td>31</td>
</tr>
<tr>
<td>Orós</td>
<td>6.000</td>
<td>20</td>
</tr>
<tr>
<td>Alto Santo</td>
<td>5.540</td>
<td>18</td>
</tr>
<tr>
<td>Pentecoste</td>
<td>3.404</td>
<td>11</td>
</tr>
<tr>
<td>Sobral</td>
<td>2.890</td>
<td>10</td>
</tr>
<tr>
<td>Horizonte</td>
<td>1.440</td>
<td>5</td>
</tr>
<tr>
<td>Mauriti</td>
<td>1.150</td>
<td>4</td>
</tr>
<tr>
<td>Barbalha</td>
<td>192</td>
<td>1</td>
</tr>
<tr>
<td>Jaguaribe</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Crateús</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>29.905</td>
<td>100</td>
</tr>
</tbody>
</table>

Fonte: IBGE (2014).

Tabela 3.11. Produção estimada de alevinos produzidos nos Polos de Castanhão e Orós, as linhagens mais usadas e os principais tamanhos comercializados.

<table>
<thead>
<tr>
<th>Polo/Região</th>
<th>Linhagens comercializadas no Polo</th>
<th>Volume médio produzido no Polo</th>
<th>Tamanho médio comercializado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orós</td>
<td>GIFT Aquamérica e Chitralada</td>
<td>8.000.000</td>
<td>2-3g</td>
</tr>
<tr>
<td>Castanhão</td>
<td>GIFT Spring, GIFT, Chitralada</td>
<td>50.000.000</td>
<td>0,5 a 3 g</td>
</tr>
</tbody>
</table>
Diferentemente de Orós, onde um único fornecedor concentra 60% da venda do Polo, no Castanhan, os diversos fornecedores de alevino disputam os produtores deste Polo. No entanto, produtores relatam observar diferença na qualidade dos alevinos entre os fornecedores, sendo observado desuniformidade do lote e maior mortalidade, dependendo do fornecedor.

A produção de alevinos, linhagens e localização das Centrais de Alevinagens que abastecem os Polos do Ceará estão descritas na Tabela 3.12.

Como observado na Tabela 3.13, a diferença entre os valores do preço de alevinos para os de juvenis pode chegar a 80%. Perdas por mortalidade, que nas fases jovens tem sido relatada entre 20 a 30%, dependendo do manejo e sistema de cultivo, e o alto custo da ração, que nesta etapa é mais cara por conter maior teor de proteína bruta, fazem com que alguns produtores optem por comprar juvenis, mas essa decisão é exceção no Ceará.

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Local</th>
<th>Principal mercado</th>
<th>Linhagem</th>
<th>Produção anual de tilápia (unidades)</th>
<th>Programa de melhoramento genético</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Jaguaribara-CE</td>
<td>Polo Castanhan e todo estado do Ceará</td>
<td>Chiralada</td>
<td>12.000.000</td>
<td>Sim. Seleção massal e chipagem.</td>
</tr>
<tr>
<td>B</td>
<td>Jaguaribara-CE</td>
<td>Polo Castanhan</td>
<td>Chiralada</td>
<td>3.000.000 juvenis</td>
<td>Não</td>
</tr>
<tr>
<td>C</td>
<td>Fortaleza-CE</td>
<td>Polo Castanhan e Bahia</td>
<td>GIFT melhorada por programa norueguês</td>
<td>12.000.000</td>
<td>Sim. Parceria com empresa norueguesa.</td>
</tr>
<tr>
<td>D</td>
<td>Jaguaribara-CE</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>Não</td>
</tr>
<tr>
<td>E</td>
<td>Jaguaribara-CE</td>
<td>Polo Castanhan</td>
<td>GIFT do programa norueguês e da Spring</td>
<td>2.400.000 juvenis</td>
<td>Não</td>
</tr>
<tr>
<td>F</td>
<td>Russas-CE</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>Não</td>
</tr>
<tr>
<td>G</td>
<td>Orós-CE</td>
<td>Orós</td>
<td>Chirilada e GIFT Aquamérica</td>
<td>Não, mas representa a Aquamérica que realiza melhoramento</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>DNCS Lima Soares-CE</td>
<td>Orós</td>
<td>Chirilada</td>
<td>12.000.000</td>
<td>Não</td>
</tr>
</tbody>
</table>

NI = Não informado pela empresa.

Tabela 3.13. Preço médio do milheiro das fases jovens em diferentes Polos de produção de tilápia do país.

<table>
<thead>
<tr>
<th>Tamanho das fases jovens mais comumente comercializadas (g)</th>
<th>Castanhan</th>
<th>Orós</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 – 1,0</td>
<td>R$ 55,00</td>
<td>DI</td>
</tr>
<tr>
<td>1,1 – 1,5</td>
<td>R$ 95,00</td>
<td>R$ 120,00</td>
</tr>
<tr>
<td>1,6 – 3,0</td>
<td>R$ 140,00</td>
<td>R$ 150,00</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>R$ 250,00</td>
</tr>
<tr>
<td>27 – 35</td>
<td>R$450,00</td>
<td>R$ 460,00</td>
</tr>
<tr>
<td>36 – 45</td>
<td>R$465,00 (Variação de R$ 420,00 a R$ 600,00)</td>
<td>R$ 480,00</td>
</tr>
</tbody>
</table>

DI = Dados Insuficientes.

O transporte é sempre realizado pela central de alevinagem e no caso de Orós, 90% das entregas são realizadas por água, assim como, em alguns casos, no Castanhan. No entanto, o transporte pode custar ao produtor o valor de R$ 2,00/milheiro.
A frequência do pedido costuma ser mensal e o pagamento varia de acordo com a relação entre o fornecedor e o produtor. Alguns fornecedores aceitam prazo de até 15 dias no pagamento, mas podem aumentar o valor do alevino em até 3%.

A relação de fidelidade entre os produtores e fornecedores de alevino varia entre alta e média fidelidade. De fato, principalmente na época de entressafra, que ocorre no verão, quando as altas temperaturas aumentam a mortalidade dos alevinos nas centrais de alevinagens, produtores buscam outros fornecedores e podem encontrar melhores condições de preço ou pagamento.

Geralmente, o preço é determinado pelo mercado, mas a margem de lucro dos produtores de alevino Polo pode chegar a 20%. Observa-se que o fato de o Polo produtivo de Orós ter um fornecedor que atende a maior parte do mercado, este apresenta valor do alevino mais alto que a maioria dos demais Polos estudados, inclusive do Polo vizinho do Castanhão.

Sessenta por cento dos tilapicultores (termiinação) são atendidos pelo Sítio Santa Lourdes, localizado no município de Orós que fornece, principalmente tilápias da linhagem tailandesa. Além disso, a Estação Pedro Azevedo, administrada pelo Departamento Nacional de Obras Contra as Secas - DNOCS também contribui com o fornecimento de alevinos e está localizada no município vizinho de Icó. Ambos os produtores de alevinos estão localizados a menos de 30 minutos dos principais clientes no reservatório de Orós, sendo considerado um ponto favorável logisticamente.

3.4.2. Governança da cadeia de valor

A característica da governança da cadeia produtiva da tilápiia difere entre os Polos do Castanhão e Orós. A principal diferença está na chegada de médios e grandes produtores ao açude do Castanhão, fragmentando a cadeia devido à falta de interação direta destes com os demais produtores do Polo.

Figura 3.24. Representação esquemática da cadeia produtiva da tilápiia nos Polos Castanhão e Orós.
A escala de produção e peso econômico dos produtores vindos da capital exerce influência direta sobre a governança da cadeia produtiva no Castanhão. Além de atrairem importantes fornecedores de insumos, favorecendo a competitividade e melhores condições de preço e prazo, esses produtores participam ativamente de decisões de políticas públicas com consequência para os demais produtores do Ceará, dentre os principais exemplos estão a obrigatoriedade do CRTI e a confecção de um plano de marketing da tilápias no Ceará.

Por outro lado, como os canais de comercialização dos grandes produtores são diferentes daqueles dos médios e pequenos, os efeitos de competição no mercado são minimizados. A Cadeia Produtiva da tilápias no Ceará está representada na Figura 3.24.

A fragmentação da cadeia produtiva também advém do grande número de intermediários atuando no setor. O perfil típico dos intermediários que atuam no Polo é formado por pequenos comerciantes que utilizam um único veículo (caminhão ou caminhonete) para coletar o peixe nas fazendas e levá-los diretamente para o varejo. Normalmente estes intermediários compram volumes relativamente reduzidos e fazem suas compras semanalmente junto aos piscicultores. Esses pequenos volumes de compra se justificam pela ausência de estruturas de armazenamento e também pela baixa capacidade financeira dos intermediários.

3.4.3. Análise competitiva dos Polos do Ceará

A análise das cinco forças de Michael Porter (1979)\(^{14}\) constitui uma ferramenta para o estudo competitivo de uma determinada indústria. No presente caso, o foco da análise é o segmento de terminação e seus principais atores – os piscicultores.

As barreiras à entrada de novos produtores na cadeia produtiva são consideradas médias, pois apesar dos Parques Aquícolas do Castanhão não estarem plenamente ocupados, inclusive com a migração de produtores para outras regiões, a situação hídrica é bastante crítica no momento. Como a situação costuma ser cíclica, espera-se que uma recuperação em curto prazo possa reorganizar a cadeia neste açude. Certamente a regularização das áreas de cultivo é importante, mas ao menos no açude de Orós, a tilapicultura está se desenvolvendo à parte da legislação.

No que se refere à ameaça de produtos substitutos, verifica-se baixa competição com espécies substitutas. A competição com pescados oriundos da pesca extrativa não representa um produto substituto importante devido ao maior preço e menor regularidade destes comparado com a produção de tilápias. A análise competitiva do Polo de tilapicultura do Ceará a partir do modelo de cinco forças de Porter está representada na Figura 3.25.

Diferenciado entre os Polos de Orós e Castanhão, o poder de negociação dos compradores é médio no primeiro, pois se verifica a situação de um grande número de agentes, em sua maioria intermediários de pequeno porte. No entanto, se por um lado esta dispersão resulta num equilíbrio de forças entre piscicultor e comprador, por outro ela dificulta o aumento de escala dos produtores baseado no estabelecimento de contratos formais com maiores escalas. Já no Castanhão, ocorre um maior número de grandes intermediários, viabilizando a realização de contratos e aumento das vendas.

Quanto ao poder de negociação dos fornecedores de insumos, no Polo de Orós verifica-se uma relação de poder desequilibrada, que favorece os fornecedores. Isso se deve ao número reduzido de empresas de insumos e equipamentos e também pelo perfil dos piscicultores, o qual é formado, majoritariamente por pequenos produtores. Já no Polo do Castanhão, o grande número de fornecedores de ração favorece a negociação pelos produtores.

\(^{14}\) A caracterização de uma indústria, do ponto de vista estratégico, ocorre pela caracterização dos fatores de competitividade determinantes da estrutura dessa indústria, da sua evolução e das relações que se estabelecem entre eles. Porter aponta 5 fatores, a que chama “as 5 forças competitivas”: a rivalidade entre empresas concorrentes, o poder de negociação dos fornecedores, o poder de negociação dos clientes, a ameaça de entrada de novos concorrentes e a ameaça do aparecimento de produtos ou serviços substitutos.
A análise da divisão do valor agregado da tilápiav viscerada mostra que a participação da peixaria/mercado é 12%. Os piscicultores e intermediários participam com 8% do valor final do produto.

![Diagrama da cadeia de valor da tilápicultura no Brasil](image)

Figura 3.25. Análise competitiva do Polo de tilápicultura do Ceará a partir do modelo de cinco forças de Porter.

Finalmente, percebe-se que o grau de rivalidade entre os piscicultores deste Polo é médio, pois mesmo se o crescente mercado de tilápiaino Nordeste resulta na relação demanda/oferta mais equilibrada, verifica-se que a falta de organização dos piscicultores e, a consequente pulverização da oferta, gera uma forte competição por preços entre os produtores.

3.4.4. Distribuição do valor agregado

A análise da divisão do valor agregado ao longo da cadeia produtiva permite o entendimento sobre como cada um dos agentes se apropria do capitalacumulado desde a produção até a venda do bem ao consumidor final. Um esquema representativo do valor agregado na cadeia produtiva da tilápiaino Ceará consta na Figura 3.26. Lembrando que o valor agregado é o valoradicional que o agente cria ao longo do processo produtivo. Neste caso, o custo de produção é eliminado da equação. Logo, se o custo de produção no Ceará é de R$5/kg e o valor de venda pelo produtor é de R$6,00, o valoragregado é de R$1,00.

![Diagrama da divisão do valor agregado](image)

Figura 3.26. Divisão do valor agregado na cadeia produtiva da tilápiaino Ceará, peixe inteiro (tamanho 1kg).

É importante destacar que a tilápiav viscerada representa a principal forma de venda dos Polos do Ceará. De mesmo modo, o canal de varejo no Ceará são as feiras, peixarias de rua e de supermercado, além do grande volume de venda da tilápiav inteira nos restaurantes do Estado.

3.5. Arcabouço legal e regulatório

As principais leis que influenciam a vida do piscicultor cearense são:

a) **Resolução Coema Nº 18**, de 12/09/2013 rege as normas e critérios relativos às intervenções em Áreas de Preservação Permanente para instalação de infraestrutura física diretamente ligada à atividade de aquicultura continental no Estado do Ceará. Essa lei interfere bastante na vida do piscicultor cearense devido o entorno dos reservatórios serem consideradas áreas de preservação permanente, no qual não

15 Essa resolução foi resultado de uma demanda e trabalho do setor organizado ACEAQ, através da Câmara Setorial da Tilápiav, onde com a participação da CDGERH, SRH, SEMACE e ACEAQ foi construída uma minuta de resolução baseada nas diretrizes do Novo Código Florestal e aprovada no COEMA.
se poderia intervir sem uma lei específica. Essa portaria permite as seguintes intervenções, desde que, se destinem especificamente para o desenvolvimento da atividade aquícola:

I. Abertura de pequenas vias de acesso interno, pontes e pontilhões para viabilização da atividade aquícola compreendidas aquelas inerentes a todas as etapas de produção;

II. Construção de píer, rampa de lançamento de barcos e pequeno ancoradouro;

III. Instalação de banheiros químicos;

IV. Construção de Estrutura física, para armazenamento de equipamentos, insumos e processo de abate do pescado, bem como análise de cunho analítico e de monitoramento de qualidade físico-química do recurso hídrico utilizado para atividade aquícola e análises presuntivas de sanidade de pescado cultivado.

b) Resolução Coema nº 17\(^{16}\) de 12/09/13, que introduz alterações na Resolução Coema nº 4, de 12/04/2012. Essa Resolução altera os valores de cobrança do cultivo em tanque-rede.

3.5.1. Licenciamento e outorga de água no estado

O licenciamento ambiental para produção em tanque-rede nos açudes do Estado está sendo feito por via eletrônica em forma de auto declaração pelo site da Secretaria Estadual de Meio Ambiente do Ceará - Semace, facilitando a vida dos produtores e reduzindo a burocracia.

O sistema de outorga do uso da água do Estado foi inovador, formando uma Comissão de Gestão dos Recursos Hídricos (COGERH). No entanto, hoje esse modelo já está sendo revisto dando preferência a dar outorga ao setor que gere mais emprego (emprego/m\(^3\) em vez de emprego/hectare). Dessa forma, o Estado está elegendo prioridades para seus recursos hídricos. Algumas culturas cujo plantio não está mais sendo prioridade, como no caso da rizicultura, abrindo espaço para a criação de tilápias e camarão como opção econômica para a área. No entanto, há uma falta de parâmetros e dados econômicos que suportem esse apoio governamental para o setor.

No açude Orós, a única área com cessão até o momento é a utilizada para as primeiras produções modelo, em 2004. Desde então, nenhuma outra área foi cedida pelo estado, o que, no entanto, não tem impedido o crescimento produtivo deste açude.

No açude Castanhão, os produtores possuem áreas aquícolas onerosas e não onerosas dentro dos parques aquícolas instalados pelo extinto Ministério da Pesca e Aquicultura. Parques aquícolas possuem o objetivo de priorizar e incentivar a atividade de aquicultura e uma região específica, ordenando e monitoramento a produção e seus impactos. Dessa forma, tanto a cessão de área quanto o licenciamento ambiental eram de responsabilidades do MPA. No entanto, a visão dos piscicultores é de abandono pelo governo federal que nunca realizou o devido monitoramento, dificultado a regularização das áreas produtivas e ordenamento no açude.

Dada essa condição, o setor se mobilizou e as ações da ACEAQ juntamente com a Câmara Setorial da Tilápia foram fundamentais para organizar a produção no estado, coabrindo documentos e conquistando a renovação das outorgas dos órgãos responsáveis. Além disso, a CS Tilápia provocou a formação de um grupo de trabalho para tratar da necessidade do monitoramento do açude Castanhão, para viabilização da condicionante para renovação do licenciamento ambiental do Castanhão, com a participação de: COGERH, SRH, SEMACE, ACEAQ, MPA, SEAP, DNOCs, CENTEC. Através desse grupo a Semace sugeriu analisar diversos pontos à custa do MPA, processo que foi feito e que está em vias de liberação da renovação. A Tabela 3.14 apresenta os aspectos gerais do processo regulatório da tilapicultura em tanques-rede no Ceará.

\(^{16}\) Observação: Essa resolução foi resultado de uma demanda e trabalho do setor organizado ACEAQ, através da Câmara Setorial da Tilápia, onde com a participação da COGERH, SRH, SEMACE e ACEAQ foi construída uma minuta de resolução baseada nas diretrizes do Novo Código Florestal e aprovada e aprovada no COEMA.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo médio para finalização do processo</td>
</tr>
<tr>
<td>Licenciamento ambiental</td>
</tr>
<tr>
<td>Cessão de área aquícola</td>
</tr>
</tbody>
</table>

É importante ressaltar que esses processos regulatórios tem sido um gargalo importante ao desenvolvimento do setor, tendo em vista seu alto custo e longo tempo, o que dificulta a implantação de novos empreendimentos.

3.5.2. Políticas públicas de âmbito local

Com o desenvolvimento da piscicultura em tanques-rede no País, o Ceará se beneficiou dos vários açudes existentes em seu território. Sem a necessidade de ter a posse da terra para a construção de viveiros e de aumentar a produção devido à intensificação do sistema produtivo, a atividade atraiu a atenção de investidores. Nos anos 2000, vários programas e projetos de piscicultura nos açudes do Estado começaram a aparecer e o sucesso de produção tem demonstrado influência positiva no desenvolvimento regional.

Institucionalmente, como o fator produtivo limitante no estado é a água, a tilapicultura recebeu grande apoio das secretarias estaduais para estar entre as atividades econômicas estratégicas para destinação desse recurso hídrico (Tabela 3.15).

A partir da criação da Seap – Secretaria Estadual de Pesca e Aquicultura, em 2011, que hoje é Seapa/CE – Secretaria Estadual de Agricultura, Pesca e Aquicultura, toda responsabilidade legal da fiscalização do pescado veio junto, recebendo projetos de frigoríficos de processamento de tilápia que solicitam o serviço de inspeção estadual (SIE). Porém, a SEAPA não possui estrutura de pessoal e logística suficiente para realizar a tarefa. A Câmara

17 Câmaras Setoriais são órgãos de caráter consultivo e propositivo, compostas por representantes das entidades privadas, organizações não-governamentais e órgãos públicos relacionados aos respectivos segmentos produtivos. Os integrantes das Câmaras atuam em colegiado, identificando as potencialidades e removendo as dificuldades com vistas ao desenvolvimento econômico das atividades produtivas no Ceará.

18 A presidência da Câmara Setorial da Tilápia é da ACEAQ, ou seja, do setor produtivo.
Tabela 3.15. Principais instituições atuantes no Polo de tilapicultura do Castanhão e Orós.

<table>
<thead>
<tr>
<th>Instituição</th>
<th>Principais áreas de atuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADECE (Agência de Desenvolvimento do Ceará)</td>
<td>Extensão e fomento, por meio de ações como: (a) financiamentos de infraestrutura à fundo perdido através do CAR (Companhia de Desenvolvimento e Ação Regional do Ceará), (b) apoio na abertura de associações, (c) acompanhamento técnico, (d) elaboração de projetos para licenciamento e outorga de área aquícola.</td>
</tr>
<tr>
<td>SEBRAE</td>
<td>Fomento, capacitação gerencial dos atores da cadeia produtiva da tilápia.</td>
</tr>
<tr>
<td>DNOCS</td>
<td>Infraestrutura, geração de dados, gerenciamento hídrico dos reservatórios</td>
</tr>
<tr>
<td>CENTEC</td>
<td>Fomento, geração de dados, extensão e pesquisa em aquicultura.</td>
</tr>
<tr>
<td>ADAGRI (Agência de Defesa Agropecuária do Estado do Ceará)</td>
<td>Defesa e fiscalização sanitária, por meio de ações como emissão de GTA.</td>
</tr>
<tr>
<td>UFC</td>
<td>Ensino, pesquisa e extensão na área de engenharia de pesca.</td>
</tr>
<tr>
<td>COGERH (Companhia de Gestão de Recursos Hídricos)</td>
<td>Responsável pelo gerenciamento dos açudes e outorgas de uso da água.</td>
</tr>
<tr>
<td>Secretarias de Agricultura dos Municípios de Jaguariúba e de Orós</td>
<td>Apoio no processo de licenciamento ambiental e regularização de área aquícola, por meio da intermediação entre o produtor e o MPA e ANA.</td>
</tr>
<tr>
<td>Banco do Brasil e Banco do Nordeste</td>
<td>Financiamento de custeio e investimento. Liberação de PRONAF, principal incentivo da tilapicultura de Orós.</td>
</tr>
<tr>
<td>Ministério da Agricultura</td>
<td>Ordenamento das áreas parques aquícolas.</td>
</tr>
</tbody>
</table>

De 2012 até maio de 2016, o Banco do Nordeste (BNB) financiou R$ 12,6 milhões para piscicultura no Ceará em empreendimentos em açudes públicos e particulares ou enseadas marinhas através dos Recursos do Fundo Constitucional de Financiamento do Nordeste. Os municípios beneficiados foram Jaguaribara (17,4%), Beberibe (5,6%), Aquiraz (4,8%), Aracati (4,4%), Orós (4,0%), Itapijá (3,9%), São Luís do Curu (3,4%) e Icapuí (3,1%), de um total de 123 municípios onde houve contratações.

3.6. Principais gargalos

Os Polos do Castanhão e Orós apresentam gargalos importantes que prejudicam a atuação dos piscicultores e, ao longo do prazo, podem comprometer a sustentabilidade ambiental e socioeconômica desta cadeia produtiva. A maioria dos gargalos diz respeito a questões de políticas públicas, porém outros se referem aos produtores diretamente.

A Tabela 3.16 apresenta os principais gargalos com uma tentativa de priorizá-los, baseado na percepção dos atores da cadeia e também em análises conjunturais feitas pela equipe da Embrapa Pesca e Aquicultura. Apesar de estarem separados, é evidente que há uma forte interação entre os pontos apresentados.

Os gargalos ligados à comercialização e processamento da tilápia tem uma posição de destaque, pois afetam diretamente o acesso aos mercados e a viabilidade financeira dos cultivos. As questões de regularização das áreas aquícolas também se destacam como um dos principais problemas dos Polos do estado, fazendo com que o setor se sinta “abandonado” pelo Estado e Federação. A questão referente à organização do setor produtivo também tem importância, pois dificulta o acesso às políticas públicas para a cadeia produtiva – um exemplo do que ocorre em outros Polos de tilapicultura do Brasil.
Tabela 3.16. Principais gargalos do polodo Polo de tilapicultura dos Polos do Castanhão e de Orós.

<table>
<thead>
<tr>
<th>Gargalo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falta de monitoramento das águas</td>
<td>Para definição da capacidade de suporte e ordenamento</td>
</tr>
<tr>
<td>Falta de assistência técnica</td>
<td>- Baixo número de técnicos atuantes na região;</td>
</tr>
<tr>
<td></td>
<td>- Baixo nível tecnológico dos produtores;</td>
</tr>
<tr>
<td></td>
<td>- Ausência do serviço de extensão rural expressiva para o setor.</td>
</tr>
<tr>
<td>Baixa tecnologia instalada para abate e processamento</td>
<td>- A região conta com apenas uma unidade em funcionamento, recém-inaugurada em Jaguaribara;</td>
</tr>
<tr>
<td></td>
<td>- Necessidade de integração entre grandes, médios e pequenos produtores.</td>
</tr>
<tr>
<td>Comercialização</td>
<td>- A ausência de certificação, beneficiamento e consolidação da produção de pequenos piscicultores tem dificultado o acesso a novos mercados.</td>
</tr>
<tr>
<td></td>
<td>- Falta de padronização da produção.</td>
</tr>
<tr>
<td>Demora no processo de regularização das áreas aquícolas e licenciamento ambiental</td>
<td>- Processo burocrático</td>
</tr>
<tr>
<td></td>
<td>- Ausência de regras claras e protocolos bem definidos (falta estudo de capacidade de suporte e programa de monitoramento de água);</td>
</tr>
<tr>
<td></td>
<td>- Necessidade de aumentar equipe técnica dos órgãos de meio ambiente.</td>
</tr>
<tr>
<td>Carência de novos produtos e novos mercados</td>
<td>- Não há uma identificação da tilápia de modo que o consumidor associe a qualidade do produto com o seu respectivo produtor;</td>
</tr>
<tr>
<td></td>
<td>- Baixa agregação de valor pelo produtor.</td>
</tr>
<tr>
<td>Acesso ao crédito</td>
<td>- Sem regularização, não há acesso às linhas de crédito disponíveis;</td>
</tr>
<tr>
<td></td>
<td>- Necessidade de garantias reais.</td>
</tr>
<tr>
<td>Falta de dados setoriais sistematizados</td>
<td>- Além das mudanças de metodologia na geração de dados estatísticos sobre a produção do Polo, faltam dados primários sobre o setor, ainda que recentemente este aspecto esteja sendo trabalhado.</td>
</tr>
<tr>
<td>Dificuldade de acesso aos parques aquícolas</td>
<td>- Estadas de terra estreitas e de difícil acesso</td>
</tr>
</tbody>
</table>

3.7. Perspectivas futuras

A Tabela 3.17, abaixo, apresenta as principais tendências verificadas no Ceará. Essa análise prospectiva é importante para orientar novos investimentos e também políticas públicas para o setor.

Tabela 3.17. Principais tendências dos Polos do Ceará.

<table>
<thead>
<tr>
<th>Tendência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento da oferta de tilápia e estabilização dos preços</td>
<td>O aumento da oferta tem ocorrido nos últimos anos como resultado da importação de tilápias de outros Estados como Paraná, Pernambuco e Bahia.</td>
</tr>
<tr>
<td>Mobilidade dos produtores</td>
<td>Piscicultores tem se deslocado de uma região para outra devido a problemas de escassez e qualidade de água nos reservatórios</td>
</tr>
<tr>
<td>Melhoria do nível técnico dos piscicultores</td>
<td>A chegada de piscicultores mais tecnicificados e o acesso a novas tecnologias por meio de fornecedores de insumos e equipamentos tem melhorado o nível técnico dos produtores</td>
</tr>
<tr>
<td>Aumento da preocupação por parte dos piscicultores com relação aos impactos ambientais da atividade</td>
<td>Setorialmente há demanda por um monitoramento conjunto, estado e produtores, no sentido de trazer segurança aos cultivos e ao ambiente, e identificar os reais causadores de altos impactos nas águas e demandar medidas mitigadoras</td>
</tr>
<tr>
<td>Recursos Hídricos</td>
<td>Há uma grande expectativa quanto à transposição do rio São Francisco para o rio Jaguaribe, aumentando o potencial produtivo dos açudes.</td>
</tr>
</tbody>
</table>

A entrada de tilápias produzida em outros estados, principalmente de Pernambuco, Bahia e Oeste do Paraná no mercado da grande Fortaleza, fortemente beneficiada pela queda da produção consequente da crise hídrica, teve como consequência a estabilização dos preços. O mesmo motivo tem causado insegurança produtiva nos piscicultores do estado, levando a ocorrência de migração para Polos com melhores condições ambientais, como Pernambuco e Piauí.
A transposição do rio São Francisco, em obras desde 2007, gera grande expectativa para o setor que tem ciência sobre o sucesso produtivo da tilápia no Ceará e o grande mercado consumidor da espécie na capital. No entanto, ainda que a crise hídrica tenha um ciclo de três anos nas regiões do polígono da seca, as mudanças climáticas e ambientais têm causado prorrogação desse período, gerando uma insegurança produtiva para toda a cadeia. Dessa forma, é imperativa a discussão sobre as ações que colaborem com a qualidade ambiental, como os estudos de ordenamento e capacidade de suporte, assim como as boas práticas de manejo pelos piscicultores.

Além disso, como a grande maioria dos piscicultores não contam com estruturas de processamento, o acesso a novos mercados fica comprometido devido à ausência de certificação sanitária e também limitações em termos de apresentação do produto, tornando em vista que o pescado é vendido eviscerado in natura. Neste sentido, vale ressaltar que o consumidor brasileiro de pescado tem demandado cada vez mais produtos beneficiados, tais como, peixe eviscerado e descamado, filé e cortes. Sendo assim, há de se dar celeridade em modelos de plantas que atendam ao processamento (principalmente a evisceração, no caso do Ceará) de forma econômica e segura.
4. Diagnóstico do Polo de Tilapiicultura do Submédio e Baixo São Francisco (SBSF)
4.1. Aspectos gerais

4.1.1. Aspectos geográficos e climáticos

A área de estudo é o Polo de tilapicultura localizado nas unidades hidrográficas do Submédio e Baixo São Francisco (SBSF) que fazem parte da Região Hidrográfica do São Francisco. Esta região, por sua vez, é constituída pela bacia hidrográfica do rio São Francisco (Figura 4.1), conforme Resolução nº 32/2003 do Conselho Nacional de Recursos Hídricos (CNRH).

O Polo de tilapicultura do SBSF está localizado em águas da União e abrange três estados da federação, Alagoas, Bahia e Pernambuco. O Polo é formado pelos projetos de piscicultura localizados nos reservatórios hidrelétricos de Itaparica, Moxotó e Xingó, distribuídos em sete municípios ribeirinhos e pelas indústrias do setor localizadas nos municípios de Glória e Paulo Afonso (RIBEIRO et al., 2015). Atualmente, com os novos projetos em funcionamento nos reservatórios hidrelétricos do SBSF, a distribuição das pisciculturas passou a abranger 12 municípios, sendo três no estado de Alagoas, quatro na Bahia e cinco em Pernambuco. O município de Paulo Afonso (BA) é o centro socioeconômico do Polo.

Situado no Sertão, na região semiárida do Nordeste brasileiro, mais especificamente no Polígono das Secas (BARROSO et al., 2015a), o Polo recebe fortes influências climáticas com os maiores períodos de estiagem e as maiores médias de temperatura anual do Brasil (Figura 4.2). Nessa região ocorrem baixos índices pluviométricos e muita evaporação dos corpos d’água devido às altas temperaturas e a baixa umidade relativa do ar.

Todos os acontecimentos supracitados influenciam o nível das águas dos reservatórios onde são produzidas as tilápias, com diminuição da vazão e do aumento do tempo de residência de suas águas, acelerando assim o processo de eutrofização dos ecossistemas aquáticos, tendo como resultado a diminuição da piscosidade do rio São Francisco (TENÓRIO, 2011). A eutrofização acarreta também a diminuição da produtividade das tilapiculturas do Polo, comprometendo a regularização da produção em períodos cíclicos com diminuição da capacidade de suporte para a produção de peixes nos reservatórios hidrelétricos do SBSF (BARROSO et al., 2016).

19 O Submédio São Francisco é formado pelos corpos d’água compreendidos a jusante da barragem da usina hidrelétrica de Sobradinho e a montante das barragens do complexo formado pelas usinas hidrelétricas de Paulo Afonso (PA), PA I, PA II, PA III e PA IV. O reservatório hidrelétrico de Xingó é o único lago do Baixo São Francisco que faz parte do Polo de Tilapicultura do SBSF (Informações prestadas pelo Centro de Manejo e Conservação de Rios e Lagos do Submédio e Baixo São Francisco na perspectiva da Aquicultura e da Pesca - COMRIOs, da Universidade do Estado da Bahia - UNEB).
Diante das influências ambientais que afetam a produção de tilápias no SBSF torna-se necessário que os tilapiicultores ou técnicos conheçam como se comporta a natureza ao longo do tempo nessa região de clima tropical. Tomando como referência a pluviosidade média anual do município de Paulo Afonso (540 mm), cidade sede do Polo, a temperatura média anual (25,8°C) e a evapotranspiração real (com picos variando de 4,17 a 5,11 mm de outubro de 2015 a setembro de 2016) têm-se uma visão geral destas variáveis para todo o Polo do SBSF. O mês mais seco em Paulo Afonso é outubro, com 8 mm de pluviosidade média mensal, valor quase equivalente ao que se perde por evapotranspiração no pico mais alto (5 mm), e a maior parte da precipitação ocorre em março com uma média de 83 mm (Figura 4.3). Já o mês mais quente do ano é novembro com temperatura média de 27,8 °C, encontrando-se dentro da faixa de conforto térmico da tilapia que é de 27 a 32°C (KUBITZA; KUBITZA, 2000). Em julho a temperatura média é 23.3 °C, sendo a temperatura média mais baixa de todo o ano.

Figura 4.3. Gráfico de temperatura e pluviometria do município de Paulo Afonso, BA. Fonte: Clima (2017).

O levantamento histórico, realizado pelo INMET (Instituto Nacional de Meteorologia) mostra que no Brasil apenas sete municípios apresentaram evaporação total anual acima de 2.500 mm, dentre eles encontra-se Paulo Afonso (BA). Este município apresenta, ainda as mais baixas taxas de umidade relativa do ar do país (INMET, 2016a). As Figuras 4.4 e 4.5 apresentam índices climáticos e pluviométricos da região do Polo SBSF.

O clima da região, onde se localiza o Polo do SBSF, apresenta algumas peculiaridades que possibilitam altos índices de desconforto térmico para bovinos, acima do limite de perigo (INMET, 2016b) e baixos índices de conforto para humanos (INMET, 2016c). As temperaturas não são as mais altas do país (Figura 4.4), mas a região é quente, e apesar de receber influência direta do rio São Francisco está enquadrada como semiárida por apresentar baixa umidade relativa do ar, precipitações escassas, longos
períodos de estiagens e déficit hídrico. Esta região abriga ainda o bioma da caatinga, único no mundo, localizado na mesma área do Polo. Este bioma faz parte das áreas priorizadas pela Organização das Nações Unidas (ONU) para a conservação. Também está localizado nesta área o Monumento Natural do Rio São Francisco (BRASIL, 2009), com restrições para a implantação de novos projetos de piscicultura no reservatório de Xingó.

O fenômeno Noé e José que ocorre no rio São Francisco com variações interanuais com baixos valores de cotas e anomalias positivas agravadas após 1970 (SILVA, 2013) está relacionado com as oscilações nas precipitações pluviométricas. Este fenômeno deve ser estudado quanto ao seu efeito na tilapicultura do Polo federal do SBSF e quanto ao nível de comprometimento da regularização da produção durante os períodos cíclicos de estiagem e de altas precipitações, para que se façam uso de medidas preventivas com planejamentos e escalonamento da produção (BARROSO et al., 2016). No reservatório de Xingó aconteceram três eventos de mortandades de peixes, anteriormente ao ano de 2007, (CARVALHO FILHO, 2004, 2007; SOARES et al., 2007) que provocaram o êxodo dos tilápicultores para os reservatórios de Moxotó e de Itaparica. Estes acontecimentos foram poucos estudados, mas aparentam ser um fenômeno cíclico cujos efeitos podem ser minimizados com um manejo de comportas que leve em conta a produção de tilápias em tanques-rede.

A situação da tilapicultura nos reservatórios hidrelétricos do Baixo São Francisco após as grandes chuvas ocorridas em 2004, que acarretaram na tomada de decisão emergencial da CHESF (Companhia Hidro Elétrica do São Francisco) pelos manejos operacionais de vertimentos das águas, culminando com a mortandade de peixes, foi estudada por Santos (2004). Vale ressaltar que a tilapicultura era uma atividade nova e que, ainda não existia nenhum estudo que a CHESF pudesse se apoiar para a tomada de decisões referentes aos manejos de comportas, sem causar danos aos tilápicultores, e assim, eram visualizadas principalmente às enchentes em cidades ribeirinhas. Hoje a questão hídrica está relacionada ao déficit hídrico, e deve-se considerar ainda a capacidade de suporte de produção da tilápia com as perdas de vazão dos reservatórios de Moxotó e Xingó, advindas da transposição do rio São Francisco (projeto de integração de bacias).

Atualmente, o Polo do SBSF está entre as cinco regiões mais produtoras de tilápia do país (KUBITZA et al., 2012; BRASIL, 2013; RIBEIRO et al., 2015). A atividade vem se estabelecendo como um importante recurso na região, que possui um baixo nível de renda, poucas oportunidades de trabalho e baixo nível educacional da população.

Apesar de estar localizada no semiárido, essa região possui condições excepcionais em termos de recursos hídricos, tanto em volume quanto em qualidade. As condições decorrem não somente do fluxo natural do Rio São Francisco, mas, principalmente em função da formação dos vários lagos utilizados para represar as águas do rio, necessários na produção de energia (Figura 4.6). Também são muitas as localizações estratégicas para a implantação de projetos de pisciculturas. Segundo Teixeira (2006) só no reservatório de Moxotó são 70 meandros20 (incluindo os localizados no rio Moxotó), sendo 39 na margem esquerda (18 em Alagoas e 21 em Pernambuco) e 31 meandros na margem direita (Bahia). Atualmente, este reservatório encontra-se com o maior número (36) de pisciculturas instaladas dentre os reservatórios do Polo (RIBEIRO et al., 2015).

20 Meandro é uma curva acentuada de um rio que corre em sua planície aluvial que muda de forma e posição com as variações de maior ou menor energia e cargas fluviárias durante as várias estações do ano.

Dentre as principais condições favoráveis apresentadas pela região do SBSF para o desenvolvimento da aquicultura, destacam-se:

- Grande disponibilidade de água, com elevada vazão anual média;
- Localização estratégica, próxima aos grandes centros consumidores das capitais e das médias cidades do nordeste (ex.: Aracaju, Maceió, Recife e Salvador), além da facilidade de
escoamento da produção para outros mercados no país e no exterior;
- Condições climáticas favoráveis para a criação de tilápia durante todo o ano;
- Infraestrutura instalada para o fornecimento de alevinos por meio de empresas privadas.

O principal sistema de cultivo de tilápia é o intenso em tanques-redes. Os cultivos são desenvolvidos nos reservatórios de hidrelétrica do SBSF, Itaparica (ou UHE Luiz Gonzaga), Moxotó (ou UHE Paulo Afonso IV/Apolônio Sales) e Xingó (ou UHE Xingó) (Figura 4.7).

Segundo projeções de Ribeiro et al., (2015)\(^{21}\), a produção do Polo SBSF no ano de 2014 foi de 32.988 toneladas e os dados levantados por esta pesquisa previram uma produção para este polo de 50.065 toneladas, para 2017. Isto corresponde a um aumento da produção de 43,08% em apenas quatro anos e em plena crise hídrica no rio São Francisco, podendo supor que a capacidade de suporte dos reservatórios hidrelétricos do Submédio e Baixo São Francisco, na prática, ainda não foi atingida. O aumento de produção durante esse período é ainda maior quando se observa o quantitativo por município. O município com maior produção de tilápia no polo é Glória (BA) com 16.924 toneladas para 2017, isto representa um aumento na produção para este município de 54,30% quando comparado com Ribeiro et al. (2015).

Na Figura 4.8 é possível verificar a produção de cada município.

![Figura 4.8. Estimativa da produção de tilápia do Polo do SBSF por município para o ano de 2017.](image)

O polo SBSF é formado por apenas 12 municípios, mesmo abrangendo três estados da federação. Atualmente apenas os oito municípios relacionados abaixo apresentam produção de tilápias para o ano de 2017.

De acordo com a Pesquisa da Pecuária Municipal 2015 realizada pelo IBGE os municípios de Paulo Afonso (BA), Jatobá (PE) e Glória (BA) encontram-se entre os 20 municípios com maior produção de tilápias do Brasil. A presente pesquisa realizada nos principais polos de tilapicultura do Brasil identifica um aumento significativo na produção de tilápia no polo SBSF com uma estimativa de produção de 50.065 toneladas/ano. Esta produção é a segunda

\(^{21}\) Os estudos de Ribeiro et al 2015, foi realizado através do levantamento minucioso utilizando-se número de tanque-redê, quantidade de ração e de alevino vendidos no Polo, cruzados com dados oficiais das secretarias de agricultura, entre outros, tendo uma estimativa considerada muito próxima a realidade.
maior entre os polos de tilápicultura do Brasil, produção maior do que essa só foi encontrada no Polo do Oeste do Paraná.

Considerando a produção municipal, Glória localizada na margem baiana do rio São Francisco, de acordo com o presente estudo, é a maior produtora de tilápia do Brasil com uma produção de 16.924 toneladas para o ano de 2017, superando assim, a produção de Jaguaribara (CE) após a crise hídrica do Castanhão. A Figura 4.10 apresenta o histórico da produção por município entre os anos 2013 e 2015, segundo dados do IBGE.

Apesar do trabalho minucioso da UNEB, através dos estudos de Ribeiro et al. (2015), que previu valores de produção de 32.988 toneladas para 2014, valores que se diferenciam bastante dos dados oficiais dos levantamento realizado pelo IBGE, vide Figura 4.9, que foi de 10.480 toneladas, e para o ano de 2015, foi de 12.903 t, segundo o IBGE. O presente trabalho previu uma produção para os mesmos municípios de 50.065 para o ano de 2017.

![Figura 4.9. Produção de tilápia do Polo SBSF por reservatório em 2017.](image)

Considerando agora a produção por reservatório, o de Itaparica concentra a maior produção com cerca de 25.171 toneladas, seguido por Moxotó e Xingó, os quais produzem em torno de 20.296 e 4.598 toneladas anuais, respectivamente (Figura 4.11). Estando organizados da seguinte forma: 66 pisciculturas no Reservatório de Itaparica, 92 pisciculturas do Reservatório de Moxotó e 13 pisciculturas no Reservatório de Xingó. Além do crescimento normal da atividade no Polo SBSF, o aumento da quantidade de piscicultores apresentado neste estudo se deu também pela inclusão de 12 pisciculturas praticadas em viveiros semiescavados do município de Paulo Afonso (BA), da migração de piscicultores do Ceará, por questões de restrições hídricas nos açudes cearenses, que elevou o número de produtores de 65, em 2014, para 171 em 2017, conforme apresentado na Tabela 4.1. Neste mesmo período também foi registrado um aumento na quantidade de tanques-rede de 10.846 para 14.242, além de uma tendência cada vez maior da substituição de tanques-rede de 6 m³ para 144 m³. Os volumes dos tanques variam entre 4 a 2.000 m³.

<table>
<thead>
<tr>
<th>Reservatórios do SBSF</th>
<th>Número de pisciculturas</th>
<th>Produção em tanques-rede</th>
<th>Viveiros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itaparica</td>
<td>20</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Moxotó</td>
<td>36</td>
<td>63</td>
<td>12</td>
</tr>
<tr>
<td>Xingó</td>
<td>9</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Total SBSF</td>
<td>65</td>
<td>171</td>
<td>12</td>
</tr>
</tbody>
</table>

Em uma pesquisa realizada na margem baiana do Polo SBSF, 51% das pisciculturas informaram que tem responsáveis técnicos e destes 63% formados no Curso de Engenharia de Pesca da Universidade do Estado da Bahia (UNEB), universidade que funciona no próprio polo de piscicultura. Um dado interessante é que 33% dos responsáveis técnicos são do sexo feminino.

Apesar de Itaparica possuir uma lâmina de água muito maior que Moxotó, as produções de tilápia nestes reservatórios são próximas. Considerando, ainda que o reservatório de Moxotó apresente um volume de água muito inferior ao de Xingó (Tabela 4.2), pode-se afirmar que o reservatório de Moxotó apresenta a maior produtividade de tilápia do SBSF. Além disso, o curto tempo de residência22 de suas águas de boa qualidade, pode influenciar positivamente na produtividade das pisciculturas deste reservatório, o que deve ser melhor avaliado em estudo futuro.

22 O tempo de residência consiste no período necessário para que toda a água do reservatório seja renovada. Neste sentido, quanto menor esse tempo maior é a renovação de água e consequentemente melhor é a qualidade desta para a piscicultura.

Figura 4.11. Linha do tempo da formação do Polo de tilapicultura do SBSF.

Tabela 4.2. Capacidade hídrica e número de piscicultores nos principais reservatórios do SBSF.

<table>
<thead>
<tr>
<th>Reservatório</th>
<th>Tipo de Operação</th>
<th>Volume (m³)</th>
<th>Lâmina d’água (km²)</th>
<th>Tempo de residência (dias)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itaparica</td>
<td>Regularizada</td>
<td>10.782 x106</td>
<td>839,4</td>
<td>232</td>
</tr>
<tr>
<td>Moxotó</td>
<td>Fio d’água</td>
<td>1.150 x106</td>
<td>94,96</td>
<td>5</td>
</tr>
<tr>
<td>Xingó</td>
<td>Fio d’água</td>
<td>3.800x106</td>
<td>58,94</td>
<td>16</td>
</tr>
</tbody>
</table>

Com mais de 839,40 km², o lago de Itaparica é o maior ecossistema aquático do SBSF. Nele foram instalados dois grandes projetos privados das multinacionais Pescanova (empresa espanhola) e Netuno (por um período de tempo o maior açonista foi uma empresa japonesa), com um parque industrial que inclui um centro de alevinagem, fazendas de cultivo com tanques de PEAD (Polietileno de Alta Densidade) de grande volume.

23 A linha do tempo elaborada com informações do banco de dados do COMRIOS (UNEB).
(380 m³). O projeto prevê, ainda a implantação de um entreposto avançado de armazenagem frigorífica e distribuição de produtos para os mercados interno e de exportação, com capacidade para 8 mil toneladas. Apenas a produção atual de uma delas é da ordem de 350 t/mês. No entanto, como será apresentado adiante, a piscicultura, também é vislumbrada por pequenos produtores que buscam oportunidades para sobreviver nessa região de poucas oportunidades de trabalho (BARROSO, 2014).

Toda a produção da margem baiana do lago de Itaparica e quase toda a produção do lago de Moxotó, também da margem baiana, encontram-se no município de Glória (BA). Segundo o Secretário de Agricultura e Meio Ambiente, Gilvan José Alves Lisboa, a piscicultura é uma das principais atividades deste município, representando 50% da atividade econômica (outros 50% vem da agricultura irrigada). Segundo dados da a Secretaria Municipal de Agricultura, a tilapicultura é responsável por 86% dos trabalhos formais agrícolas em Glória, empregando em média de 4 a 5 funcionários por piscicultura (dados de 2015).

Quando considerada as unidades federativas, a margem pernambucana pertencente ao polo SBSF apresenta a maior produção com 23.882 toneladas para 2017, seguida da margem baiana com 18.436 e da margem alagoana com 4.884 (Figura 4.11).

4.2. Fatos históricos relevantes para o desenvolvimento do Polo

As atividades de piscicultura na região tiveram início a partir das preocupações ambientais e sociais associadas à instalação das hidrelétricas do complexo de Paulo Afonso. A construção dessas barragens tinha o objetivo de promover a regularização da vazão do rio São Francisco para geração de energia elétrica, a irrigação e a navegação, fez com que a atividade pesqueira enfrentasse grandes dificuldades, com consequências sociais e econômicas negativas, para cerca de 6.500 pescadores artesanais atuavam naquela região (CODEVASF, 1989). Tradicionalmente, diversas comunidades ribeirinhas do Submédio e Baixo São Francisco tiravam seu sustento da pesca artesanal.

Neste contexto, de acordo com a legislação nacional, a instalação de hidrelétricas deve estar associada ao desenvolvimento de ações para proteção e preservação da fauna e flora. Portanto, a partir de 1973, iniciaram-se as ações de fortalecimento da Estação de Piscicultura de Paulo Afonso (EPPA) pertencente à Companhia Hidrelétrica do São Francisco (CHESF), estruturada para a produção de alevinos para repovoamento dos lagos formados pelo represamento do rio São Francisco e, dessa forma, criando as bases iniciais e fomentando a atividade da piscicultura, até então sem o foco específico na tilápia (SEBRAE, 2006). Até a presente data apenas três técnicos comandaram a EPPA.

25 As barragens, em geral, promovem substanciais reduções nos estoques pesqueiros naturais, por comprometerem a piracema (migração reprodutiva dos peixes) e por evitarem as tradicionais cheias anuais que possibilitam o acesso dos reprodutores e, consequentemente, dos ovos e das larvas nas lagoas marginais, que são berçários naturais para grande parte das espécies de peixes da bacia do rio São Francisco (PAIVA et al., 2003).
visualizado que a piscicultura seria a solução (Balogh, 2005). Para isto a gestão municipal buscou parcerias com o governo Federal, o governo do Estado da Bahia, a Universidade do Estado da Bahia (UNEB), a Bahia Pesca S. A., a CHESF, a CAR e com a iniciativa privada.

As respostas das ações políticas começaram a acontecer a partir do ano de 1998 com a realização do primeiro Curso de Especialização em Aquicultura (UFRPE e UNEB) no Município de Paulo Afonso (BA). Este Curso de Pós-graduação foi autorizado pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior do Ministério da Educação (CAPES) e foi possível graças aos acordos celebrados entre a Prefeitura Municipal de Paulo Afonso, a Universidade do Estado da Bahia (UNEB), a Universidade Federal Rural de Pernambuco (UFRPE) e a Companhia Hidrelétrica do São Francisco (CHESF)26 objetivando o aprimoramento dos profissionais da piscicultura para atuarem nesta nova atividade produtiva.

Ainda, neste mesmo ano iniciaram-se as atividades do Programa Xingó, que depois se tornou o Instituto de Desenvolvimento Científico e Tecnológico de Xingó. O Instituto foi constituído em 1998 pela CHESF, CNPq, Sudene, Comunidade Solidária, e várias universidades, dentre elas a UNEB. Entre as unidades de projetos do Instituto a mais importante para a atividade foi a de Aquicultura com ações voltadas diretamente para o desenvolvimento da tilapiicultura no Submédio São Francisco, desenvolvendo muitas pesquisas, treinamentos, assistência técnica, produção de alevinos de tilápia, engorda e processamento da tilápia.

Em 1998 passam a ser ministrados diversos cursos na UNEB na área de piscicultura para alunos do curso de Biologia e para os técnicos da área. Também neste mesmo ano é criado o Curso de Engenharia de Pesca com ad referendum do Conselho Pleno da UNEB para funcionamento no Campus VIII, no município de Paulo Afonso.

Em 1999 uma série de cultivos comerciais de tilápia ocorreu na região, entre eles os das associações do Caçara (reservatório da PA IV, Paulo Afonso-BA), das associações do reservatório de Xingó (Xingozinho, Malhada Grande, Lagoa do Junco, Ilha Verde, Olho D’aguinha, Pia do Roque, Sítio do Tará) na margem baiana (Paulo Afonso-BA) e da associação da Quixaba (reservatório de Mozotó, Glória, BA). A Bahia Pesca teve importante participação nesse processo.

A visualização inicial do tamanho da tilapiicultura no Polo do SBSF foi a partir dos resultados dos trabalhos de zoneamento da piscicultura nos reservatórios hidrelétricos do Submédio São Francisco (SEVERI et al., 2000a, 2000b, 2000c, 2001) e do redimensionamento da capacidade de produção em tanques-rede do Reservatório de Xingó (SEVERI et al., 2002).

No ano de 2000 a Bahia Pesca S. A. realizou a importação de um lote de 30.000 juvenis de tilápia da linhagem Chitralada, a qual substituiu a Oreochromis spp (variedade vermelha), melhorando o desempenho da produção no SBSF (BARROSO et al., 2015).

Durante o período de 2006 a 2008 foram implantados vários projetos particulares que atraíram muitos empresários de outros setores para

26 Em 1973 iniciaram-se os primeiros trabalhos da EPPA/CHESF com o Departamento Nacional de Obras Contra as Secas (DNOCS). Comunicação pessoal do Dr. José Patrocínio Lopes, pesquisador do Centro de Manejo e Conservação de Rios e Lagos do Submédio e Baixo São Francisco na perspectiva da Aquicultura e da Pesca (COMRios/UNEB).
a atividade da piscicultura. Este foi um período de fortalecimento da Cooperativa Mista Agropecuária dos Produtores de Paulo Afonso (COOMAPA).

Em 2006, a Agência Nacional das Águas outorgou o uso da água para a Pescanova Brasil Ltda. produzir 1.500.000,00 kg de peixe no Reservatório da UHE de Itaparica (Itacuruba, PE). Nesse ano o Grupo Netuno assumiu a unidade de Beneficiamento de tilápia da AAT (Grupo MPE) e em 2010 a Integral Mix comprou a fábrica de ração Centemar do Grupo MPE27.

Em 2007, ocorreu a inauguração do Centro de Desenvolvimento e Difusão de Tecnologia em Aquicultura (CDTA/UNEB) com o objetivo de atender as necessidades da piscicultura do SBSF, com capacitações e treinamentos das pessoas envolvidas na atividade e no desenvolvimento de pesquisas voltadas para a sustentabilidade da piscicultura, e no desenvolvimento ou transmissão de novas tecnologias para a atividade. Este projeto foi acolhido inicialmente pelo Ministério da Integração Nacional e depois teve como parceiros a Companhia de Desenvolvimento dos Vales do São Francisco e Parnaíba (CODEVASF), a Coordenação de Desenvolvimento Agrário (CDA), a Companhia Hidrelétrica do São Francisco (CHESF), a Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), a Bahia Pesca S. A. e a Prefeitura de Paulo Afonso.

Traçando uma linha do tempo restrita apenas a área que forma o Polo de Tilapicultura do SBSF, conforme histórico abordado anteriormente, pode-se iniciar no ano de 1911 com a cessão de uso de água do rio São Francisco para a geração de energia elétrica, dando prosseguimento com a formação dos reservatórios hidrelétricos da CHESF que compreendeu os anos de 1949 a 1994, da introdução da tilápia em 1971, da formação das associações idealizadas por Pe. Antonio Miglio e incubadas pela diocese de Floresta (2002-2008), período da regularização do primeiro projeto de piscicultura do SBSF (2003-2011), o período de mortandade de peixes no reservatório de Xingó (2004-2007) e do rápido crescimento a partir de 2006 impulsionado pela implantação de novos projetos e a expansão de outros já existentes, a exemplo da Netuno (Figura 4.11). Essa expansão pode ser explicada, entre outros motivos, pela crescente demanda de tilápia no mercado regional e também pela maior disponibilidade de tecnologias e insumos, tais como alevinos de qualidade.

O projeto de incubação de associações de piscicultores da diocese de Floresta, PE consiste no apoio à criação de associações de pequenos piscicultores com o objetivo de oferecer uma alternativa de renda para os jovens das comunidades do entorno do lago da Hidrelétrica de Itaparica. Este projeto teve início em 2002 e atualmente reagrupa 10 associações de piscicultores que totalizam 117 membros, os quais produzem mensalmente 130 toneladas de tilápia. O projeto tem gerado um forte impacto social, principalmente em termos de renda, uma vez que os ganhos médios dos associados são em torno de R$ 2.000 a 3.000/mês (PEDROZA FILHO et al., 2014).

Foram as associações incubadas pela diocese de Floresta (Floresta, PE), localizadas no município de Jatobá, PE, as primeiras pisciculturas do Brasil a serem regularizadas em águas da União, abrindo caminho para facilitar o processo de licenciamento onde muitos empreendimentos, ainda hoje, têm dificuldades para serem regularizados (SILVA, 2014a). São elas, as associações Boa Esperança dos Piscicultores do Mari (ABEM), Jovens Criadores de Peixes (AJCP), Nova Aliança dos Piscicultores (ANAP), Jovens Criadores de Tilápia (AJCT), Novos Criadores de Tilápia (ANCT), Pequenos

27 Comunicação pessoal do zootecniista Ivo de Lucena Lino e Silva, experiente técnico do setor de rações do Polo do SBSF.
Criadores de Peixes (APCP) e São Sebastião do Sítio das Umburanas (ASSSU) (SILVA, 2014a).

As solicitações do licenciamento dessas tilapiiculturas aconteceram em 2003 quando não se tinha, ainda experiência dos órgãos envolvidos quanto a esse tipo de produção em águas da União. O primeiro licenciamento do país para piscicultura em águas da União a utilizar tanques-rede foi para a Associação Jovens Criadores de Peixes. Até essa piscicultura ser licenciada, cada passo previsto em lei era apenas teoria. Durante o processo houve a modificação jurídica de alguns tramites, quando surgiu a Instrução Normativa Interministerial nº 06 de 2004 que estabeleceu as normas complementares para a autorização de uso dos espaços físicos em corpos d’água de domínio da União para fins de aquicultura. Foi o ano de 2005 que foi liberada a primeira Licença de Operação do país para este tipo de empreendimento, a anuência do SPU e do Ministério da Pesca e Aquicultura para a Associação Jovens Criadores de Peixes foi concluída em 2011, o que foi um marco para a regularização das pisciculturas no Polo do SBSF e no país (SILVA, 2014a).

4.3. Caracterização da tilapicultura no Polo do SBSF

4.3.1. Perfil dos produtores

Apesar do cultivo de tilápia no SBSF ter se iniciado no fim da década de 1990, a maioria dos piscicultores em atividade nessa região iniciou seus cultivos há menos de 10 anos (Tabela 4.3). Atualmente, são aproximadamente 84 produtores no Polo.

A existência de uma grande quantidade de piscicultores originários de outras regiões é uma das características deste Polo. Essa característica é mais verificada entre produtores de médio e grande porte, os quais vieram de outras cidades do Nordeste como Recife ou Maceió, onde os mesmos atuavam em outros setores, agrícolas (ex.: cana de açúcar) ou não. Mais recentemente, o Polo tem recebido piscicultores que já trabalhavam com produção de tilápia em outras regiões do nordeste e tiveram que migrar devido a problemas de estiagem (ex.: reservatório do Castanhão no Ceará).

4.3.2. Características da tilapicultura

Apenas os grandes e médios produtores contam com assistência técnica, devido à contração de técnicos privados. Essa situação configura um dos principais problemas do Polo, pois resulta numa dificuldade de acesso a novas tecnologias por parte dos pequenos produtores.

No que se refere à participação em organizações produtivas (associações, cooperativas etc.), poucos piscicultores estão inseridos em tais grupos. O Polo conta com uma cooperativa de piscicultores, porém a mesma tem uma atuação limitada a aspectos formais referentes à emissão de nota fiscal de venda de pescado. À exceção das associações apoiadas pelo projeto da diocese de Floresta, PE e pela Prefeitura de Petrolândia (PE), existem pouquíssimas iniciativas de cooperação entre piscicultores. Este quadro tem como consequências diversos problemas em termos de escala de produção, mas, também no que se refere à falta de representação política dos pequenos e médios piscicultores frente aos poderes públicos.

Tabela 4.3. Principais características das tilapiculturas do SBSF.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo médio de atuação</td>
<td>7 anos</td>
</tr>
<tr>
<td>Tamanho piscicultor</td>
<td>Volume médio</td>
</tr>
<tr>
<td>Pequeno</td>
<td>500 à 1.000 m³</td>
</tr>
<tr>
<td>Médio</td>
<td>5.000 à 8.000 m³</td>
</tr>
<tr>
<td>Grande</td>
<td>20.000 à 30.000 m³</td>
</tr>
<tr>
<td>Volume médio de produção</td>
<td>(em m³ de tanques-rede)</td>
</tr>
<tr>
<td>Pequeno</td>
<td>Região do SBSF</td>
</tr>
<tr>
<td>Médio e Grande</td>
<td>Outras regiões</td>
</tr>
</tbody>
</table>

Este Polo apresenta diferentes perfis de piscicultores com relação ao porte, medido pelo volume de produção, verificando-se desde pequenos piscicultores até grandes empreendimentos empresariais com aporte de capital estrangeiro. No entanto, verifica-se um predomínio de médios e pequenos produtores.
Uma das características do SBSF que o distingue dos demais Polos de tilapicultura do país é o fato da grande maioria dos produtores serem os proprietários das áreas em terra. Apesar de demandar um investimento significativo, isso diminui os riscos ligados ao arrendamento de terra, tal como cancelamento do contrato.

Em termos de financiamento da atividade, a maioria dos piscicultores utilizam recursos próprios, não recorrendo a bancos ou demais entidades financeiras para cobrir o investimento e custeio da produção (Tabela 4.4). Desse modo, a capacidade de investimento dos produtores fica relativamente limitada. No entanto, vale ressaltar que isto é uma característica, ainda muito comum dentro da atividade aquícola em geral no Brasil. Dentre os fatores que justificam essa situação no Polo do SBSF, os principais são a falta de garantias por parte dos piscicultores e dificuldade em cumprir exigências burocráticas, tais como licenciamento ambiental. A exceção ocorre com alguns grandes produtores que acessam linhas oficiais do BNDES, Banco do Nordeste e Banco do Brasil.

Tabela 4.4. Principais características dos tilapicultores do SBSF.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilização de financiamento bancário</td>
<td>Não</td>
</tr>
<tr>
<td>Status da área em terra</td>
<td>Própria</td>
</tr>
<tr>
<td>Assistência técnica pública</td>
<td>Não</td>
</tr>
<tr>
<td>Participação em organização produtiva</td>
<td>Baixo nível de participação</td>
</tr>
</tbody>
</table>

4.3.3. Caracterização tecnológica

A aplicação de vacina nos peixes vem sendo aos poucos utilizada pelos produtores, sendo que a mesma já é oferecida pelos fornecedores de alevinos, não havendo piscicultores que realizem a vacinação na propriedade (Tabela 4.5).

Quanto ao uso de gelo, verificou-se que a grande maioria dos produtores utiliza este insumo durante o transporte, assegurando uma melhor qualidade e durabilidade ao pescado. Isso constitui um elemento importante, haja vista as longas distâncias percorridas pelo pescado, que atende compradores dentro de um raio de aproximadamente 500 km. A maioria dos produtores compra o gelo de terceiros, porém existe uma tendência de parte dos produtores em produzir seu próprio gelo a fim de reduzir custos e contar com uma fonte de renda oriunda da venda deste insumo. Neste sentido, vale ressaltar que o gelo é um insumo relativamente caro neste Polo, custando em média R$ 0,30/kg de gelo. Considerando que a necessidade no transporte de pescado é de cerca de 1 kg de gelo para cada quilograma de pescado, é possível visualizar o impacto deste insumo no custo de produção.

Grandes e médias empresas têm investido em novas tecnologias voltadas para a produção de tilápia. A Tabela 4.6 apresenta uma síntese destas principais inovações.
4.3.4. Agregação de valor e estrutura de mercado

Atualmente o Polo do SBSF conta com apenas uma unidade de processamento de pescado pertencente a uma grande empresa produtora. Essa unidade não recebe tilápia de terceiros, processando apenas sua própria produção. Essa unidade conta com habilitação Serviço de Inspeção Federal (SIF) e inclusive vem iniciando exportação de filé de tilápia para o exterior.

É importante ressaltar o impacto social do elo de processamento, tendo em vista que é uma atividade que demanda um grande efetivo de trabalhadores. Por exemplo, a referida indústria de processamento emprega cerca de 190 funcionários, sendo todos da região. Essa indústria é uma das principais empregadoras do município de Paulo Afonso, BA.

Além de gerar empregos diretos, a unidade de processamento também viabiliza parcerias com a indústria local de ração por meio do fornecimento de óleo e farinha obtidos dos resíduos do abate de tilápia. Essa parceria gera importantes efeitos de encadeamento que resultam, não apenas em ganhos econômicos, mas também ambientais, uma vez que os resíduos deixam de ser enviados ao meio ambiente (ainda que tratados) e passam a ser aproveitados.

No que se refere aos compradores, não há uma concentração em um ou poucos clientes. Em geral os produtores possuem uma quantidade razoável de compradores, variando em média de 5 até 20 (Tabela 4.7). Essa situação de certo modo reflete a característica dos intermediários que atuam neste Polo, que em geral são comerciantes de pequeno porte e com pouco capital. Consequentemente, estes intermediários compram volumes pequenos, o que leva os piscicultores a procurar vários compradores de forma a escalar toda a produção. Apesar de exigir um esforço de busca contínua por novos compradores, esse quadro é positivo para os piscicultores nos que se refere à redução de risco de calote e melhoria do poder de negociação, haja vista que os compradores têm um poder de barganha limitado. No entanto, a produção local não tem como crescer de maneira sustentável nesse modelo.

A rentabilidade do Polo do SBSF é uma das maiores entre as demais regiões produtoras do país. Uma das principais razões que justificam esta rentabilidade é o maior preço de venda obtido pelos piscicultores. É possível que a manutenção de patamares de preços mais elevados se deva a pressão de grandes piscicultores e associações de produtores que conseguem manter um nível mínimo de preços de referência.
O custo de produção deste Polo com relação ao citado nos polos do Ceará, é significativamente menor muito provavelmente pela menor mortalidade ocorrida nas pisciculturas, maior controle produtivo e menor custo da ração (preço médio de R$ 40,00/saco de 25 kg de ração contra preço médio de R$ 45, 60 / 25kg no Ceará).

4.3.5. Infraestrutura do Polo

A falta de infraestrutura representa um dos principais gargalos do Polo do SBSF. A ausência de unidades de processamento de pescado constitui uma das principais carências em termos de infraestrutura. Neste sentido, vale ressaltar que a região conta com duas unidades públicas de processamento desativadas (Figura 4.12). Essas plantas foram construídas com recursos públicos, estaduais e federais, e devido a diversos problemas políticos, técnicos e de gestão essas estruturas nunca entraram em operação.

Além disso, a falta de fábricas de gelo também representa um gargalo importante sendo o gelo local vendido a preço elevado. Isso resulta em vários problemas logísticos devido à necessidade de se deslocar para comprar o gelo e também pelo seu elevado custo.

![Imagens de estruturas públicas desativadas, Polo do SBSF.](Fotos: Marcelo Pedroso Filho.)

No que se refere à infraestrutura geral como energia elétrica e rodovias, o Polo do SBSF é relativamente bem servido. Todas as pisciculturas entrevistadas contam com energia elétrica, porém com relação a estradas a região apresenta alguns problemas de má conservação, não apenas nas rodovias, mas também nas estradas vicinais. A esse respeito, é importante frisar que o Polo do SBSF se encontra se confluência de quatro estados (Bahia, Pernambuco, Alagoas e Sergipe) e, portanto, as condições das rodovias variam de estado para estado. A seguir na Figura 4.13 é apresentado o mapa rodoviário das estradas sob jurisdição federal no âmbito dos estados citados. Vale lembrar que na região os assaltos rodoviários são frequentes, influenciados por uma rota de produção e tráfico de drogas.
4.3.6. Mercado

A tilápia produzida no Polo do SBSF é comercializada, em sua maioria, através de intermediários (atracassadores) que se abastecem junto a diversos produtores de pequeno e médio porte e, em seguida, intermediários de pequeno porte compram e distribuem o pescado nos principais canais de varejo do mercado regional, sendo os principais as feiras livres, as peixarias e, mais recentemente, os supermercados. Este mercado regional está localizado dentro de um raio de, aproximadamente, 500 km e abrange, sobretudo, municípios do interior, além de algumas capitais dos estados que compõem o Polo SBSF (Figura 4.14). Recentemente, devido a problemas na produção de tilápia no Ceará, causado pela estiagem, parte da produção do SBSF tem sido comercializada neste estado, em especial, na sua Capital, Fortaleza.

Figura 4.14. Área de abrangência do mercado de tilapicultura do Polo de SBSF.
O mercado institucional (ex: PAA28 e PNAE29), ainda não é utilizado pelos piscicultores do Polo. No entanto, é importante ressaltar que este canal de venda representa uma alternativa interessante para os produtores, em particular de pequeno porte. A falta de unidades de processamento habilitadas pela inspeção oficial (federal, estadual ou municipal) – condição necessária para fornecer pescado a estes programas – constitui uma das barreiras que tem dificultado o acesso aos mercados institucionais. As principais características do mercado de tilápia do Polo SBSF constam na Tabela 4.8.

Tabela 4.8. Principais características do mercado de tilápia do Polo SBSF.

<table>
<thead>
<tr>
<th>Perfil do produtor (porte)</th>
<th>Principais canais de comercialização</th>
<th>Principais formas de apresentação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeno</td>
<td>Intermediários</td>
<td>Inteiro fresco</td>
</tr>
<tr>
<td>Médio</td>
<td>Intermediários e venda direta aos varejistas</td>
<td>Inteiro fresco</td>
</tr>
<tr>
<td>Grande</td>
<td>Supermercados</td>
<td>Filé congelado</td>
</tr>
</tbody>
</table>

A grande maioria da tilápia produzida no Polo é vendida inteira pelos produtores, sendo posteriormente esviscerada e descamada pelos varejistas (Figura 4.15). As feiras livres, ainda representam o principal canal de venda no mercado local. No entanto, é evidente que este elo da cadeia produtiva carece de uma melhor estrutura a fim de oferecer ao consumidor um produto mais apresentável e de melhor qualidade.

A venda de filé ou outros cortes, ainda é insignificante e restrita a alguns supermercados e peixarias que exploram um consumidor de maior renda (Figura 4.15). Recentemente, alguns produtores têm investido em iniciativas visando agregar valor à tilápia por meio de filetagem, cortes e embalagem dos produtos.

28 Programa de Aquisição de Alimentos.

29 Programa Nacional de Alimentação Escolar.

Figura 4.15. Comercialização de tilápia na feira livre de Paulo Afonso, BA.

Figura 4.16. Tilápia inteira embalada a vácuo e filé vendido em peixaria de Paulo Afonso, BA.
4.4. Governança e estrutura da cadeia de valor da tilápia

4.4.1. Estrutura da cadeia de suprimentos

Apesar de o Polo contar com uma fábrica de ração, verificou-se que a maioria dos piscicultores utiliza rações produzidas em outras regiões como, por exemplo, em Recife, PE. Essa indústria de ração local também produz ração para outros animais, como cavalo e cães, porém a ração para tilápia representa cerca de 40% do volume total de ração produzido. Esta fábrica emprega cerca de 100 pessoas, o que coloca em evidência a importância social da indústria de insumos dentro de qualquer polo de produção – em especial numa região pobre como o sertão baiano.

O tanque-rede é um dos poucos equipamentos produzidos no Polo do SBSF, com exceção de grandes produtores que utilizam tanques de grande volume importados do Chile. No geral, os produtores compram o equipamento de uma fábrica local ou compram a tela e constroem a estrutura na própria fazenda. No entanto, vale ressaltar que nos dois casos parte dos insumos – sobretudo as telas – vêm das regiões sul e sudeste do Brasil. A matriz de origem dos insumos e equipamentos utilizados no Polo do SBSF constam na Tabela 4.9.

Cabe salientar que o produtor de tanques-rede, a fábrica de ração, o produtor de alevinos e o entreposto estão localizados a menos de 30 km uns dos outros e dos principais produtores de engorda, confirmando esta que poderia tornar mais barata e rápida a aquisição e escoamento de suprimentos.

As regiões Sul e Sudeste do Brasil, também são responsáveis por fornecer outros insumos e equipamentos como medicamentos, classificador de peixes e softwares para gestão da produção. O gelo, pela sua própria natureza que dificulta à logística, é produzido localmente por pequenos empreendedores localizados nas sedes das cidades que compõem o Polo.

<table>
<thead>
<tr>
<th>Insumo/Equipamento</th>
<th>Local de produção do insumo ou equipamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Medicamentos</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Classificador de peixes</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Software de gestão</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>de produção</td>
<td></td>
</tr>
<tr>
<td>Tanque-rede</td>
<td>Dentro do Polo (porém a tela vem de fora do Polo)</td>
</tr>
<tr>
<td>Gelo</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Alevinos</td>
<td>Dentro e fora do Polo</td>
</tr>
</tbody>
</table>

Segundo dados dos entrevistados, aproximadamente 70% da ração consumida no Polo vêm de indústrias de fora, na sua maioria localizada em outras regiões do nordeste.

Maiorias das fábricas está nas regiões sul e sudeste.

A maioria dos tanques-rede é produzida no Polo, porém utilizando insumos vindos do sul e sudeste (ex: telas).

Localizados nas sedes dos municípios dos Polos.

O Polo conta com alevinagens de grande porte, porém alguns piscicultores buscam este insumo em outras regiões.

4.4.2. Governança da cadeia de valor

A principal característica da governança da cadeia produtiva da tilápia no Polo do SBSF se refere à sua fragmentação com relação ao grande número de atores presentes nos diferentes elos. Apesar de existirem alguns produtores de grande porte, não se verifica uma interação direta destes com os demais médios e pequenos produtores. Os grandes produtores não se integram com os demais e não é comum a existência de parcerias ou contratos visando consolidar volumes ou utilizar as unidades de processamento de pescado (Figura 4.17).

Assim, apesar da grande escala de produção e peso econômico, os produtores de grande porte não exercem uma influência direta sobre a governança da cadeia produtiva. Por outro lado, como os canais de comercialização dos grandes produtores são diferentes daqueles dos médios e pequenos, os efeitos de competição no mercado são minimizados.
A fragmentação da cadeia produtiva também advém do grande número de intermediários atuando no setor. O perfil típico dos intermediários que atuam no Polo é formado por pequenos comerciantes que utilizam um único veículo (caminhão ou caminhonete) para coletar o peixe nas fazendas e levá-los diretamente para o varejo. Normalmente estes intermediários compram volumes relativamente reduzidos e fazem suas compras semanalmente junto aos pescicultores. Esses pequenos volumes de compra se justificam pela ausência de estruturas de armazenamento e também pela baixa capacidade financeira dos intermediários.

4.4.3. Análise competitiva do Polo do SBSF

A análise das cinco forças de Michael Porter constitui uma ferramenta para o estudo competitivo de uma determinada indústria. No presente caso, o foco da análise é o segmento de engorda e seus principais atores – os pescicultores.

As barreiras à entrada de novos produtores na cadeia produtiva são consideradas médias, pois apesar do acesso às tecnologias de produção ser relativamente fácil, o processo de obtenção de novas áreas aquícolas nos reservatórios da região é bastante difícil. As dificuldades estão relacionadas a não autorização de novas áreas aquícolas por parte dos órgãos competentes, sob argumento de esgotamento de que o número de autorizações concedidas ou solicitadas já atingiu 1% da área dos reservatórios do Submédio Rio São Francisco.

No que se refere à ameaça de produtos substitutos, verifica-se – a exemplo dos demais polos de tilápia do Brasil – uma elevada competição com produtos substitutos, principalmente filés de pescados importados. A competição com pescados oriundos da pesca extrativa não representa um produto substituto importante devido ao maior preço e menor regularidade destes comparado com a produção de tilápia. A análise competitiva do Polo de tilápicultura do SBSF, a partir do modelo de cinco forças de Porter, é representada na Figura 4.18.

O poder de negociação dos compradores é médio, pois se verifica a atuação de um grande número de agentes, em sua maioria intermediários de pequeno porte. No entanto, se por um lado esta dispersão resulta num equilíbrio de forças entre pescicultor e comprador, por outro ela dificulta o aumento de escala dos produtores baseado no estabelecimento de contratos formais com maiores escalas.
4.4.4. Distribuição do valor agregado

A análise da divisão do valor agregado ao longo da cadeia produtiva permite o entendimento sobre como cada um dos agentes se apropria do capital acumulado desde a produção até a venda do bem ao consumidor final. Um esquema representativo do valor agregado na cadeia produtiva da tilápia no SBSF consta na Figura 4.19.

Figura 4.19. Divisão do valor agregado na cadeia produtiva da tilápia no SBSF, peixe inteiro (tamanho 1 kg).

A análise da divisão do valor agregado da tilápia inteira mostra que a participação do feirante – principal canal de varejo da tilápia na região – é 25%. Os piscicultores e intermediários participam respectivamente com 20 e 15% do valor final do produto.

É importante destacar que a tilápia inteira representa a principal forma de venda neste Polo, diferente de outros como aqueles do Paranaí, São Paulo e Santa Catarina onde o filé é o produto mais explorado. De mesmo modo, o principal canal de varejo no SBSF é a feira livre, ao contrário dos demais polos citados que tem nos supermercados seu principal agente de comercialização final.
Consequentemente, essas diferenças resultam em participações distintas em termos de valor agregado por agente, principalmente no que se refere às participações equilibradas entre produtores e varejistas.

4.5. O papel das organizações de piscicultores no Polo de tilápia do SBSF

No Submédio São Francisco, uma das organizações de piscicultores familiares pioneiras é a Associação de Jovens Piscicultores de Jatobá. Na verdade, esta instituição constituiu um projeto de incubação de associações de pequenos piscicultores desenvolvido pela Diocese de Floresta, PE. O projeto teve início em 2002, com o objetivo de oferecer uma alternativa de renda para os jovens das comunidades localizadas no entorno do lago de Itaparica (PEDROZA FILHO et al., 2014). Atualmente, o projeto possui 10 associações de piscicultores que totalizam 117 membros e produzem, mensalmente mais de 130 toneladas de tilápia. Com forte impacto social, os ganhos médios mensal dos associados são, em torno, de R$ 2.000 a R$ 3.000. Das 10 associações, 8 estão localizadas em Jatobá, PE, 1 em Itacuruca, PE e 1 em Belém do São Francisco, PE. Vale ressaltar que dentre as associações uma delas é formada exclusivamente por mulheres e outra por pescadores (PEDROZA FILHO et al., 2014). Um estudo de caso realizado por Silva (2014b) com parte dessas associações sobre a piscicultura na perspectiva de gênero, identificou que a associação composta só por mulheres mostrou-se mais eficiente quanto à produtividade.

O sucesso desta iniciativa estimulou a instalação de outros cultivos coletivos de tilápia na região. Hoje, segundo o ProRural (órgão de extensão rural, ATER), existem 23 associações de produtores familiares, em diferentes níveis tecnológicos, distribuídas nos municípios de Itacuruca, Belém de São Francisco, Jatobá e Petrolândia. Juntas, estima-se que a produção anual de tilápia seja de 1.500 t. (BARROSO; ANDRÉS, 2014).

4.6. Arcabouço legal e regulatório

4.6.1. Regulação ambiental e cessão das águas públicas da União

No âmbito legal e regulatório, os aspectos que mais influenciam a produção de tilápia no Polo do SBSF se referem ao processo de licenciamento ambiental e à cessão de águas públicas da União (área aquícola). Ambos os processos são burocráticos e dispendiosos, gerando elevados custos de transação para os piscicultores (Tabela 4.10).

| Tabela 4.10. Aspects gerais do processo regulatório do Polo de tilápia no SBSF. |
|-----------------|-----------------|-----------------|
| **Licenciamento ambiental** | **Tempo médio para finalização do processo** | **Órgão responsável** |
| 1-5 anos | 3 anos | Secretarias estaduais ou municipais de meio ambiente |
| **Cessão de área aquícola** | 3-5 anos | MAPA |

No que se refere ao licenciamento ambiental, apenas Glória, BA municipalizou o processo de licenciamento ambiental. No entanto, segundo os piscicultores entrevistados, isso, ainda não se traduziu em uma maior celeridade do processo. Nos demais municípios do Polo o licenciamento fica a cargo das Secretarias estaduais de meio ambiente.

Incentivos para diminuir a informalidade num país tão extenso e de difícil fiscalização são necessários para uma maior agilidade dos órgãos regulatórios, além de uma melhor capacitação dos profissionais envolvidos e suporte técnico oferecido pelo poder público (SILVA, 2014).

Com relação à cessão de área aquícola, o processo fica a cargo da Superintendência estadual do Mapa, que fica responsável por encaminhar o processo aos demais órgãos envolvidos (SPU-Secretaria de Patrimônio da União, Marinha, etc.).
É importante ressaltar que esses processos regulatórios tem sido um gargalo importante ao desenvolvimento do setor, tendo em vista seu alto custo e longo tempo, o que dificulta a implantação de novos empreendimentos.

4.6.2. Políticas públicas de fomento e extensão

No âmbito das políticas públicas de fomento e extensão, as principais entidades que intervêm no setor são: CODEVASF, Secretaria de Aquicultura e Pesca do Ministério da Agricultura, Pecuária e Abastecimento (recentemente criado através do Decreto nº 8.701/2016), os Governos dos Estados de Alagoas, Bahia, Pernambuco e Sergipe, Prefeituras Municipais, o SEBRAE, os Bancos do Nordeste e do Brasil, as universidades (Ex: UNEB, UNIVASF), Bahia Pesca, Câmara Setorial de Aquicultura do Baixo São Francisco, Instituto de Desenvolvimento Científico e Tecnológico de Xingó/Instituto Xingó (fechado em 2012). As principais instituições atuantes no Polo de tilapicultura do SBSF constam na Tabela 4.11.

Com intuito de articular políticas públicas que dinamizem e fomentem o desenvolvimento rural de Pernambuco, foi lançado pelo governo estadual o programa “Territórios Produtivos”. Este programa é promovido pelo ProRural (órgão de extensão rural, ATER) e visa a elaboração do Plano Territorial da Rede Produtiva da Piscicultura. O Plano Territorial da Rede Produtiva da Piscicultura objetiva fornecer condições que melhorem a competitividade das pisciculturas dessa região através do fortalecimento da cadeia produtiva, promovendo a sustentabilidade e ampliando a participação de produtores familiares no mercado.

Tabela 4.11. Principais instituições atuantes no Polo de tilapicultura do SBSF.

<table>
<thead>
<tr>
<th>Instituição</th>
<th>Principais áreas de atuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahia Pesca S. A.</td>
<td>Extensão e fomento, por meio de ações como: (a) financiamentos de infraestrutura a fundo perdido através do CAR (Companhia de Desenvolvimento e Ação Regional da Bahia), (b) apoio na abertura de associações, (c) acompanhamento técnico, (d) elaboração de projetos para licenciamento e outorga de área aquícola.</td>
</tr>
<tr>
<td>SEBRAE</td>
<td>Fomento, capacitação gerencial dos atores da cadeia produtiva da tilápia</td>
</tr>
<tr>
<td>CHESF (Companhia HidroElétrica do São Francisco)</td>
<td>Infraestrutura elétrica, geração de dados, gerenciamento hídrico dos reservatórios.</td>
</tr>
<tr>
<td>CODEVASF (Companhia de Desenvolvimento dos Vales do São Francisco e do Parnaíba)</td>
<td>Fomento, geração de dados, extensão e pesquisa em aquicultura</td>
</tr>
<tr>
<td>ADAB (Agência estadual de Defesa Agropecuária)</td>
<td>Defesa e fiscalização sanitária, por meio de ações como emissão de GTA e credenciamento de entrepostos.</td>
</tr>
<tr>
<td>UNEB (Universidade do Estado da Bahia)</td>
<td>1. Ensino: Formação de Engenheiros de Pesca, Biólogos e Especialistas em Aquicultura; 2. Pesquisa: Grupo de Pesquisa e Extensão em Pesca e Aquicultura do Médio, Submédio São Francisco vinculado ao CNPq; Centro de Desenvolvimento e Difusão de Tecnologia em Aquicultura (CDTA) e a Coleção de Referência do rio São Francisco (CRSF); 3. Extensão: Centro de Manejo e Conservação de Rios e Lagos do Submédio São Francisco na Perspectiva da Aquicultura e da Pesca (COMRIOS); Laboratório de Práticas Pedagógicas Inovadoras (Lapped); Projeto RioInova vinculado a FAPESP; projeto off.Rio do Núcleo de Pesquisa e Extensão (NUPE).</td>
</tr>
<tr>
<td>Secretaria de Agricultura do Município de Glória, BA</td>
<td>Apoio no processo de licenciamento ambiental e regularização de área aquícola, por meio da intermediação entre o produtor e o MPA e ANA</td>
</tr>
<tr>
<td>Banco do Brasil e Banco do Nordeste</td>
<td>Financiamento de custeio e investimento. No entanto, devido às problemas em termos de garantias por parte dos piscicultores e falta de documentação, a atuação dos bancos tem sido bastante limitada.</td>
</tr>
<tr>
<td>Secretaria de Aquicultura e Pesca - MAPA</td>
<td>Fomento e ordenamento das áreas e parques aquícolas</td>
</tr>
</tbody>
</table>
Em termos práticos, o Plano é um conjunto de ações e investimentos organizados em estratégias e compromissos, resultante de consensos entre atores (sociedade civil e estado) do Território Produtivo. As ações (Tabela 4.12), sempre de natureza participativa, incluem a colaboração das organizações de produtores, conselhos municipais, instituições de crédito, instituições governamentais e não governamentais (PRORURAL) (Barroso, 2014).

Tabela 4.12. Principais ações do Plano Territorial da Rede Produtiva da Piscicultura no Sertão de Itaparica, PE.

<table>
<thead>
<tr>
<th>Ações de Investimento</th>
<th>Valor Estimado (R$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1º ano</td>
</tr>
<tr>
<td>Implantação de unidades produtivas</td>
<td>1.250.000</td>
</tr>
<tr>
<td>Aquisição de Infraestrutura, tanques - rede e equipamentos</td>
<td>300.000</td>
</tr>
<tr>
<td>Projeto ATER</td>
<td>240.000</td>
</tr>
<tr>
<td>Construção de instalação de uma Unidade de Beneficiamento de Pescado (UBP)</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.790.000</td>
</tr>
</tbody>
</table>

Fonte: Barroso e Andrés (2014).

Tal investimento será realizado em parceria entre o Governo do Estado de Pernambuco e o Banco Mundial. O projeto inclui ações de suporte para implementação de novas unidades produtivas abrangendo a construção de infraestruturas e aquisição de equipamentos, projetos de extensão rural pela Prorural e a construção de um entreposto de pescado, sendo este o maior investimento pactuado (R$ 5 milhões). Com rendimento financeiro estimado entre 30 e 36%, o processamento representa importante adição de valor para os produtores envolvidos que disponibilizarão de um produto final com alto valor agregado. Em média, o preço do filé nos supermercados é de R$23/kg, sendo quatro vezes superior ao valor de venda de peixe fresco na feira. Além disso, com os filés, os produtores poderão acessar programas de compra direta do governo brasileiro, principalmente o Programa Nacional de Alimentação Escolar (PNAE) que representa um excelente canal de venda, paga preços competitivos e apresenta garantia de pagamento (BARROSO; ANDRÉS, 2014).

O Polo conta com 3 unidades públicas de processamento, sendo que 2 estão desativadas e 1 em construção. Essas unidades foram construídas com recursos públicos obtidos através de instituições como Bahia Pesca, CAR e MPA. Uma das unidades localizada no distrito de Xingozinho (Paulo Afonso, BA) está desativada há mais de 12 anos e possui estrutura para receber a certificação sanitária SISBI-POA do Ministério da Agricultura, o que lhe permitiria comercializar o pescado em todo Brasil. Os principais motivos pelos quais esses entrepostos estão desativados são os mesmos levantados por Pedroza Filho et al. (2014) em outras partes do país, ou seja, problemas de organização e autogestão da parte dos produtores e também questões políticas. Além disso, falhas técnicas na elaboração dos projetos também contribuem para inviabilização destas unidades.

4.7. Principais gargalos do Polo

O Polo do SBSF apresenta gargalos importantes que prejudicam a atuação dos piscicultores e, ao longo prazo, podem comprometer a sustentabilidade ambiental e socioeconômica desta cadeia produtiva. A maioria dos gargalos diz respeito a questões de políticas públicas, porém outros se referem aos produtores diretamente.

A Tabela 4.13 apresenta os principais gargalos do Polo. A lista abaixo consiste numa tentativa de priorizar os principais gargalos e se baseia na percepção dos atores da cadeia e também em análises conjunturais feitas pela equipe do projeto. Apesar de estarem separados, é evidente que há uma forte interação entre diversos dos pontos apresentados.

Os gargalos ligados à comercialização e processamento da tilápia têm uma posição de destaque, haja vista que afetam diretamente o acesso aos mercados e a viabilidade financeira dos cultivos. A demora no processo de regularização das áreas aquícolas também se destaca como um dos principais problemas do Polo do SBSF. As questões referentes à organização
do setor produtivo, também tem importância, haja vista que isso dificulta o acesso às políticas públicas para a cadeia produtiva – a exemplo do que ocorre em outros polos de tilapicultura do Brasil.

Tabela 4.13. Principais gargalos do Polo de tilapicultura do SBSF.

<table>
<thead>
<tr>
<th>Gargalo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falta de unidades de processamento de pescado</td>
<td>A região conta com apenas uma unidade em funcionamento, mas que não recebe pescado de terceiros.</td>
</tr>
<tr>
<td>Comercialização</td>
<td>A ausência de habilitação sanitária, beneficiamento e consolidação da produção de pequenos piscicultores tem dificultado o acesso a novos mercados; Necessidade de desenvolver o mercado local.</td>
</tr>
<tr>
<td>Demora no processo de regularização das áreas aquícolas e licenciamento ambiental</td>
<td>Processo caro e burocrático. Ausência de protocolos bem definidos por parte dos órgãos estaduais e municipais responsáveis; Necessidade de aumentar equipe técnica dos órgãos de meio ambiente</td>
</tr>
<tr>
<td>Falta de diferenciação de produtos</td>
<td>Não há uma identificação da tilápia de modo que o consumidor associe a qualidade do produto com seu respectivo produtor; Baixa agregação de valor pelo produtor</td>
</tr>
<tr>
<td>Falta de transparência com relação às regras e processo de certificação sanitária das unidades de processamento</td>
<td>A regularização sanitária é cara e complexa; Dificuldade em se cumprir as demandas das agências regulatórias para obtenção dos selos de inspeção dos entrepontos.</td>
</tr>
<tr>
<td>Falta de representatividade por parte dos agentes da cadeia produtiva</td>
<td>Os piscicultores do Polo não contam com uma organização formal que os represente junto à esfera política e institucional. Houve uma tentativa mal sucedida de se montar uma Câmara Setorial do Pescado no Baixo São Francisco e na margem Pernambucana.</td>
</tr>
<tr>
<td>Carência de dados estatísticos</td>
<td>A exceção do IBGE, nenhuma instituição vêm gerando dados estatísticos sobre a produção do Polo.</td>
</tr>
</tbody>
</table>

A análise do processo de regularização de pisciculturas, localizadas no rio São Francisco, confirma a morosidade da regularização como entrave para o crescimento da tilapicultura. A não regularização da piscicultura causa restrições à piscicultura, com impedimentos ao crédito disponibilizado para o setor, a negociação com empresas de grande porte e com o setor público. Outras questões que interferem negativamente no processo são a necessidade de readequação do projeto por falta de experiência dos órgãos envolvidos e a dificuldade de compreensão do trâmite do processo de regularização que envolve mais de um órgão e vários normas legais por parte dos tilapicultores (SILVA, 2013).

4.8. Perspectivas futuras do Polo de tilapicultura do SBSF

A Tabela 4.14 apresenta as principais tendências verificadas no Polo do SBSF. Essa análise prospectiva é importante para orientar novos investimentos e também políticas públicas para o setor.

<table>
<thead>
<tr>
<th>Tendência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento da oferta de tilápia e estabilização dos preços</td>
<td>O aumento da oferta tem ocorrido nos últimos anos como resultado da chegada de novos produtores de fora (Ceará e Recife (Pernambuco?), por exemplo) e a ampliação de volume de piscicultores da região.</td>
</tr>
<tr>
<td>Mobilidade dos produtores</td>
<td>Migração de piscicultores de outros Polos. Necessidade de um ordenamento para garantir a qualidade da água dos reservatórios.</td>
</tr>
<tr>
<td>Melhoria do nível técnico dos piscicultores</td>
<td>A chegada de piscicultores mais tecificados e o acesso à novas tecnologias, por meio de fornecedores de insumos e equipamentos, tem melhorado o nível técnico dos produtores.</td>
</tr>
<tr>
<td>Aumento da preocupação por parte dos piscicultores com relação aos impactos ambientais da atividade</td>
<td>Os piscicultores tem apresentado uma percepção mais apurada sobre os impactos que a forte expansão da atividade tem gerado no ambiente.</td>
</tr>
</tbody>
</table>

O preço da tilápia no Polo do SBSF, apesar de ser o maior entre os demais polos do Brasil (semelhante ao preço dos Polos do Ceará), vem apresentando uma estabilização ao longo dos anos. O aumento da oferta de pescado na região é o principal fator, mas não o único, que tem influenciado nos preços locais. A crise econômica pela qual passa o país também tem contribuído para a redução da demanda. Além disso, como a grande maioria dos piscicultores não contam com estruturas de processamento, o acesso a novos mercados fica comprometida devido à ausência de Inspeção sanitária e também limitações em termos de apresentação do produto, tendo em
vista que o pescado é vendido inteiro in natura. Neste sentido, vale ressaltar que o consumidor brasileiro de pescado tem demandado cada vez mais produtos beneficiados, tais como, peixe eviscerado e descamado, filé e cortes.

Parte dos novos piscicultores, que tem se instalado no Polo do SBSF, são produtores que atuavam em outras regiões do nordeste e que tiveram que finalizar seus cultivos devido à escassez de água (ex.: reservatório do Castanhão no Ceará). De fato, essa mobilidade de piscicultores tem sido uma tendência crescente na tilapicultura brasileira. A característica da aquicultura de tanque-rede, que requer um investimento fixo menor que em viveiros escavados e barragens, facilita a transferência dos produtores de uma região para outra.

Outra tendência verificada, se refere à preocupação dos piscicultores com os eventuais impactos ambientais oriundos da rápida expansão do Polo. Os efeitos das últimas estiagens e a vinda de novos produtores originários de outras regiões tem acentuado esta atenção por parte dos piscicultores do Polo do SBSF.
5. Diagnóstico do Polo de Tilapicultura da Ilha Solteira
5.1. Aspectos gerais

5.1.1. Aspectos geográficos e climáticos

O Polo de tilapicultura da Ilha Solteira está localizado no rio Paraná, entre os municípios de Três Lagoas, MS e Castilho, SP a jusante e Santa Fé do Sul, SP e Aparecida do Taboado, MS a montante. Apesar do reservatório da Ilha Solteira se estender para os rios Grande e Paranaíba, para fins deste estudo, a delimitação do polo obedece as indicações dos parceiros e do setor. Além disso, apesar de levar o nome de Ilha Solteira, o Polo será estendido ao lago de Jupiá, pois em curto prazo, esse lago terá grande influência na cadeia produtiva da tilápia da região. Dessa forma, consideramos nesse estudo que o Polo de tilapicultura da Ilha Solteira é constituído pelos lagos da UHE de Ilha Solteira e UHE de Jupiá, formando um corpo hidrico com potencial produtivo de 126.000 t no lago da Ilha Solteira (não há informação deste nível para Jupiá).

Finalizadas na década de 1970, as duas hidrelétricas juntas formam um dos maiores complexos hidrelétrico do mundo, com 1.525 km² de extensão, sendo 1.195 km² o reservatório da UHE de Ilha Solteira e 330 km² o da UHE de Jupiá. Os municípios que constituem o Polo são, do lado paulista, Santa Fé do Sul, Santa Clara d’Oeste, Três Fronteiras, Santa Albertina, Mesópolis, Rubiênia, Ilha Solteira e Castilho e do lado sul mato-grossense, Três Lagoas, Selvíria e Aparecida do Taboado (Figura 5.1). O clima nesta região do país é tropical úmido com 1 a 3 meses secos (Figura 5.2).

Os reservatórios de Ilha Solteira e Jupiá estão localizados na Região Hidrográfica do Paraná, a terceira maior do país com 886.187 km² (Figura 5.3). Nesta são encontradas inúmeras barragens para o aproveitamento hidrelétrico, uma vez que os rios e corredeiras (fácilmente encontrados no planalto) são favoráveis à construção de usinas.

Aproximando o campo de visão sob o Polo de Ilha Solteira na região hidrográfica do Paraná, são verificadas 12 bacias hidrográficas que possuem contribuição hídrica, sendo elas: Bacias Hidrográficas dos Rios Tietê, Sucuriú, iguapeí, Verde de MS, da Quitéria, São José dos Dourados, Turvo e Grande (contribuição hídrica aos municípios do Polo); Santana, Aporé, Verde de GO e Paranaúba (contribuição hídrica ao reservatório de Ilha Solteira), Figura 5.4.

Figura 5.2. Mapa Climático do Brasil na escala de 1.5.000.000 com destaque no polo de tilapiicultura de Ilha Solteira.
Fonte: Adaptado de IBGE (1978).

A maior produção do Polo está no reservatório da Ilha Solteira, do lado paulista, mas a implantação de sete parques aquícolas do lado sul mato-grossense, totalizando uma área de 427 hectares e capacidade de produzir 36.000 toneladas, fomentou a rápida instalação de empreendimentos nesta margem do lago, apesar dos Parques Aquícolas mencionados não terem sido totalmente implantados. De acordo com os empresários da região, a maior agilidade para obtenção de licenciamento ambiental no Estado do Mato Grosso do Sul atrai para essa margem diversos empreendimentos, incluindo uma grande empresa norte-americana que começa a se instalar em Selvária, no lago da UHE Jupiá.

Segundo o levantamento da CATI (Coordenadoria de Assistência Técnica Integral, 2015), foram produzidas 30.000 toneladas nos municípios que compreendem o oeste paulista em 2013 e 45.000 toneladas produzidas em todo o estado. A instalação de grandes empreendimentos nos lagos da Ilha Solteira e de Jupiá promoveu a vinda de vários piscicultores e serviços, fazendo da região a mais importante do estado em produção de tilápia, concentrando hoje 70% da produção do estado.

Como a estatística de produção de peixes no Brasil sofreu alteração de metodologias, há uma dificuldade em estabelecer números acurados. De acordo com os dados oficiais, a produção deste Polo no ano de 2015 foi de 18.382 toneladas. A Tabela 5.1 a baixo mostra a produção por município.

Tabela 5.1. Produção de tilápia (toneladas) do Polo da Ilha Solteira, por município, nos anos de 2013, 2014 e 2015.

<table>
<thead>
<tr>
<th>Município</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Fé do Sul, SP</td>
<td>6.486</td>
<td>5.762</td>
<td>5.360</td>
</tr>
<tr>
<td>Aparecida do Taboado, MS</td>
<td>1.276</td>
<td>306</td>
<td>3.200</td>
</tr>
<tr>
<td>Santa Clara do Oeste, SP</td>
<td>4.460</td>
<td>3.140</td>
<td>2.242</td>
</tr>
<tr>
<td>Rubiânea, SP</td>
<td>270</td>
<td>340</td>
<td>1.115</td>
</tr>
<tr>
<td>Três Fronteira, SP</td>
<td>560</td>
<td>712</td>
<td>594</td>
</tr>
<tr>
<td>Santa Albertina, SP</td>
<td>365</td>
<td>446</td>
<td>536</td>
</tr>
<tr>
<td>Ilha Solteira, SP</td>
<td>220</td>
<td>180</td>
<td>505</td>
</tr>
<tr>
<td>Total</td>
<td>13.637</td>
<td>10.886</td>
<td>13.552</td>
</tr>
</tbody>
</table>

A alta produção nos reservatórios deste Polo é justificada pelas altas taxas de radiação incidentes, temperaturas médias elevadas e disponibilidade de água de boa qualidade. A temperatura média anual é de 24,5°C, com verão marcado por temperaturas máximas superiores a 33°C, com extremos de 40°C e mínimas raramente inferiores a 20°C. A precipitação média anual é de 1.232mm, com uma umidade relativa média anual de 64,8% (HERNANDEZ et al., 1995).

O bioma predominante é o da Mata Atlântica, no entanto, a vegetação de toda região foi reduzida a menos de 5% de sua cobertura original. Calculou-se que em Santa Fé do Sul, cerca de 3%, ainda resista na forma de mata secundária (já alterada pelo homem), o que corresponde a 768 ha. Iniciativas para a recuperação de matas ciliares neste município, entre outras ações voltadas para a recuperação e preservação ambiental, conferiram ao mesmo o prêmio “Município Verde Azul”, selo criado pelo governo do estado de São Paulo, tendo obtido o primeiro lugar no ranking de classificação nos anos de 2008, 2009 e 2011.

A região apresenta solos de boa fertilidade e topografia plana. O Polo conta com boa rede de transporte, formada por rodovias, ferrovias, hidrovias e a proximidade de dois aeroportos: – aeroporto de Araçatuba a 150 km e aeroporto de São José do Rio Preto a 200 km; além de eletroiação rural em elevada densidade, tradicionais Escolas Técnicas Agropecuárias e Faculdades de Agronomia, Zootecnia e Veterinária. As principais culturas agrícolas da região são: cana-de-açúcar, pastagem, milho, seringueira e alguma fruticultura como laranja e uva. Segundo o Instituto de Economia Agrícola (IEA-APTA/SAAB-SP), o valor do arrendamento em dinheiro na região variou entre R$500,00 e R$1.000,00 o hectare/ano, em 2014. Em 2015, um levantamento feito pela CATI nos 22 municípios do Escritório de Desenvolvimento Rural (EDR) de Jales: arrendamento para cana-de-açúcar varia de 900,00 a 1.800,00 R$/ha/ano, com média de 1.057,00 entre os 22 municípios da região. Para milho varia de 400,00 a 850,00 R$/ha/ano, com média de R$ 600,00.

30 Nas usinas com reservatório de regularização do rio, em que o fluxo da água utilizada para a produção de energia, ocorre acúmulo de água no reservatório nos períodos de cheia. Durante os períodos secos, a água acumulada, além da decorrente do fluxo natural, é utilizada para gerar energia.
Ambos os reservatórios apresentam boa qualidade da água pelo curto tempo de residência, sendo 47,6 dias para UHE Ilha Solteira e 5 dias para UHE Jupiá (dados da Companhia Energetica de São Paulo - CESP).

Em suma, as principais condições favoráveis apresentadas pela região para o desenvolvimento da tilápicultura são:

- Grande disponibilidade de água, com elevada vazão anual média;
- Localização estratégica, próximo a grandes centros consumidores das capitais e médias cidades dos estados de São Paulo, Minas Gerais e Mato Grosso do Sul, além da facilidade de escoamento da produção para outros mercados no país e no exterior; Mão de obra especializada;
- Proximidade de centros de pesquisa e universidades;
- Infraestrutura instalada para o fornecimento de alevinos, ração e processamento, por meio de empresas privadas.

Por ser um reservatório de acumulação e regularização, o nível da água do lago da UHE Ilha Solteira varia de acordo com as chuvas. Essa condição faz com que as pisciculturas neste reservatório possam sofrer com baixos níveis do lago nas épocas de estiagem. O Canal Artificial de Pereira Barreto, que une o rio Paraná ao Tietê, funciona como importante hidrovia na região e demanda o nível mímico para funcionamento na cota de 323 metros. Essa condição assegura aos piscicultores que o nível do reservatório seja controlado neste nível, só oscilando drasticamente em casos de situações ambientais muito adversas, como ocorridas entre 2013 e 2014. A UHE Jupiá é uma usina hidrelétrica a fio d’água que gera um reservatório com dimensões menores do que um reservatório de acumulação e, portanto, sofrendo menos com as variações sazonais. A Figura 5.5 apresenta o mapa de precipitação média anual de 1977 a 2006 da região que engloba o Polo de tilápicultura de Ilha Solteira.

5.2. Fatos históricos relevantes para o desenvolvimento do Polo

Abraçando a espécie desde sua chegada ao Brasil, o estado de São Paulo possui registros de cultivo de tilápia desde a década de 50, quando as companhias hidrelétricas distribuíam alevinos aos produtores rurais, ao mesmo tempo em que repovoavam os reservatórios públicos (OLIVEIRA et al., 2007; JUNIOR; JUNIOR, 2008). No entanto, somente na década de 90, com a chegada de linhagens melhoradas (Chitrala e GIFT), o cultivo passou a gerar resultados relevantes para o setor, atraindo a entrada de novos empreendedores na atividade. Outros fatores, como a adoção do pacote tecnológico de cultivo em tanques-rede de pequeno volume e alta densidade, o sucesso dos pesque-pague, melhoramento das rações e do
Figura 5.6. Linha do tempo do Polo de tilapicultura da Ilha Solteira.

manejo também influenciaram positivamente a tilapicultura na região. Hoje, a tilápia é a espécie aquícola mais cultivada no estado, que possui 645 municípios, muitos com poder aquisitivo acima da média brasileira. Segundo o IBGE, pelo menos 153 municípios paulistas produzem tilápia. O somatório de algumas características do Estado de São Paulo como o alto grau de empreendedorismo e o grande sucesso dos pesque-pagues teve um papel importante na divulgação da produção e do consumo de tilápia no estado, com reflexo para todo o país.

Na última década, a região do noroeste paulista assistiu a um rápido crescimento da tilapicultura, principalmente no que se refere ao uso dos tanques-rede em águas públicas, aumentando a produção do Estado. Com a instalação de um grande empreendimento no município de Buritama nos anos 2000, outros empreendimentos rapidamente apareceram nos municípios de Santo Antônio do Aracanguá e Zacarias. Atualmente a maior produção do estado está localizado no município de Santa Fé do Sul, que utiliza os braços da represa de Ilha Solteira para a produção de tilápias.

As primeiras pisciculturas em tanques-rede com escala comercial no reservatório da Usina Hidrelétrica de Ilha Solteira foram implantadas no final do século XX e início do XXI. Algumas experiências iniciadas antes desse período, a exemplo de projeto piloto implantado pelo Sindicato Rural de Santa Fé do Sul, aprenderam na prática sofrendo dificuldades com a falta de equipamentos e insumos adequados. Até 2005, não mais do que cinco pisciculturas estavam em atividade na região. No entanto, o grande potencial produtivo levou à mobilização de algumas prefeituras (Santa Fé do Sul, Santa Clara d’Oeste, Nova Canaã Paulista, Rubiara, Três Fronteiras e Santa Rita d’Oeste) em parceria com várias esferas de governo e trabalhadores locais, que culminou na criação do Consórcio Intermunicipal de Piscicultura. Essa ação foi fundamental para auxiliar o setor no acesso às políticas públicas, na formação de parcerias para capacitação de mão de obra e desenvolvimento inicial da atividade neste Polo.

A Figura 5.6 ilustra a linha do tempo dos principais acontecimentos para a formação deste polo.

Em 2006 a instalação de uma Unidade Demonstrativa (UD) com recursos financeiros da Secretaria Especial de Aquicultura e Pesca (SEAP/PR), contrapartida dos municípios do consórcio e o apoio da Coordenadoria de Assistência Técnica Integral do estado de São Paulo (CATI), entre outros parceiros como a Agência Paulista de Tecnologia dos Agronegócios (APTA) e Universidade Estadual Paulista (UNESP), atraiu investidores e produtores rurais. Esse foi o gatilho inicial que atraiu diversas outras iniciativas para o reservatório de Ilha Solteira.
Pioneiros no uso do tanque-rede no Brasil, piscicultores dessa região aprenderam na prática optando pelo uso de tanques de pequeno volume (6 a 18 m³), com evolução gradativa do tamanho das unidades produtivas somada à adoção de tecnologias.

Com sucesso produtivo, a região vem consolidando associações e cooperativas de produtores, mas ainda pouco representativo e pouco efetivo em termos produtivos. Desde 2007 grandes projetos privados vem sendo montados, apresentando hoje um parque industrial que inclui produção de alevinos, fazendas de criação com tanques-rede de grande volume, fábricas de ração e frigoríficos de processamento, que juntas possuem a capacidade de processarem mais de 2.500 toneladas de tilápia/mês.

Além das iniciativas privadas, entre 2007 e 2012, 14 projetos de parques aquícolas tramitavam no extinto Ministério da Pesca e Aquicultura, sendo seis do lado paulista, sete do lado sul mato-grossense e um nas margens mineiras do reservatório. Representando 157 ha e uma estimativa de produção máxima de 88.845 t/ano, entretanto, apenas os parques da margem sul mato-grossense foram licitados e entregues. A Figura 5.7 apresenta a data de início de operação das das empresas de tilápia instaladas no Polo da UH de Ilha Solteira.

Figura 5.7. Data de início de operação das empresas de tilápia instaladas no Polo da UH de Ilha Solteira.

5.3. Caracterização da tilapicultura

5.3.1. Perfil dos produtores

A produção na região caracteriza-se por concentrar produtores com perfil empresarial (independente do seu porte) e com bom nível tecnológico. Há uma boa articulação entre os produtores e os demais elos da cadeia que, apesar de verticalizada, apresenta um grande número de empresas envolvidas. Há no Polo aproximadamente 100 piscicultores dos quais cinco são empresas de grande porte (produção > 80 t/mês) com controle vertical da atividade (Grupo Ambar Amaral, Zippy, Genesas, Tilápia Supreme, Royal Fish). A grande maioria, no entanto, é constituída de produtores de médio porte (produção entre 30 a 80 t/mês). Os pequenos produtores da região representam apenas 10% destes e produzem até 30 t/mês.

O sistema de produção é o intensivo realizado em tanques-rede de pequeno a médio volume: 6 a 108 m³, que comportam densidades de 80 a 100 kg de tilápia por metro cúbico. Na busca para aumentar as suas produções, a partir de 2012, alguns grandes piscicultores introduziram tanques-rede de grande volume, de até 2.000 m³, utilizando densidades de 40 a 50 kg de tilápia por metro cúbico de tilápia por metro cúbico (Tabela 5.2). A Figura 5.8 ilustra algumas pisciculturas características do polo.

Figura 5.8. Pisciculturas do Polo da Ilha Solteira.
A sazonalidade climática ocorre na região e pode afetar as tilápias confinadas em dois momentos específicos: nos meses mais frios (entre junho e agosto) e também nos meses mais quentes do verão (janeiro a março). Em ambos os períodos há perda produtiva, seja pelo aumento da mortalidade, seja pela diminuição no consumo da ração.

RESUMO DA PRODUÇÃO NO POLO ILHA SOLTEIRA

PRODUÇÃO DE TILÁPIAS NO ESTADO DE SP: 35.000 TONELADAS (2014, segundo a CATI)

PRODUÇÃO NO POLO: 25.000 TONELADAS ANUAIS

SISTEMA DE CULTIVO: TANQUES REDES

PELO MÉDIO DE ABATE: 800 GRAMAS

CICLO MÉDIO: 7 MESES (partindo de juvenil de 35 g)

DESTINO:

- FILETÁGEM (frigoríficos locais): 70%
- MERCADO IN NATURA (atacados, peixarias, supermercados): 20%
- PESQUE PAGUES: 10%

PRINCIPAIS MUNICÍPIOS PROTOURS DE TILÁPIA: Santa Fé do Sul, Rubiniéa, Ilha Solteira, Três Fronteiras, Santa Albertina, Santa Clara d’Oeste,

Obs.: em 2014 houve redução na produção de 30% devido ao déficit hídrico e queda no nível dos reservatórios. Essa produção vinha aumentando na ordem de 25% por ano.

5.3.2. Características produtivas

O Polo apresenta uma alta frequência de assistência técnica entre os piscicultores, incluindo a influência que recebe da APTA, (Instituto de Pesca e APTA Regional) e da UNESP na assessoria técnico-científica para os problemas da região. A assistência técnica pública é realizada pela CATI e Secretarias Municipais de Agricultura. Pequenos produtores, quando não técnicos eles mesmos, contam com o apoio dos órgãos públicos e, como alguns pequenos e médios produtores, da assistência técnica ocasional fornecida por empresas de insumo, principalmente pelas indústrias de ração, mas também há relatos de assistência fornecida pelas distribuidoras de softwares de manejo produtivo.

No que se refere à participação em organizações produtivas (associações, cooperativas etc.), piscicultores deste Polo têm percebido a importância de se juntarem em grupos formais para resolverem os principais gargalos comuns. O Polo conta com uma cooperativa de piscicultores e uma associação que vem crescendo em número de associados - Associação de Piscicultores de Águas Paulistas e da União (Peixes SP). Apesar do objetivo inicial da Associação ser consolidar volume para comercialização da produção e aquisição de insumos, ela tem focado suas ações às questões de regularização, principalmente licenciamento ambiental e outorga das áreas produtivas, que é um importante gargalo do Polo. Recentemente, houve uma mudança de nome da associação e de seus objetivos, aumentando a abrangência de atuação para todo o estado de São Paulo. Já a Cooperativa de Piscicultores de Santa Fé do Sul foi constituída em 2007 com 30 cooperados que dividem tarefas em uma pequena produção de tilápias usando um modelo de economia solidária.

Pode se dizer que o Polo apresenta uma boa comunicação entre os elos da cadeia e uma participação ativa na Câmara Setorial do Pescado do Estado de São Paulo, vinculada à Secretaria de Agricultura e Abastecimento do Estado, cuja gestão 2014 – 2016 foi presidida por um produtor de alevinos de Rubiniéa, demonstrando a força da tilapicultura no estado. A participação de outros atores da cadeia nas reuniões setoriais fortemente a representação política dos pequenos e médios piscicultores frente aos poderes públicos.
do estado. Ainda, este Polo abriga grandes investimentos e empresas com acesso e influência política estadual, facilitando a conversa com os órgãos reguladores.

Uma das características do Polo de Ilha Solteira é o fato da grande maioria dos produtores arrendarem as áreas em terra de acesso aos cultivos para a instalação da infraestrutura de apoio, sendo um dos itens que afetam os custos de produção, além do risco de cancelamento do contrato. O preço do hectare arrendado para essa finalidade na região varia entre 1 e 3 salários mínimos mensais.

Em termos de financiamento da atividade, os pequenos piscicultores deste Polo não se encaixam na classificação do PRONAF, sendo muito poucos os que conseguem acessar linhas oficiais programa, tanto para custeio quanto para investimento. A maioria dos produtores utiliza recurso próprio, não recorrendo a bancos ou demais entidades financeiras para cobrir o investimento e custeio da produção. Vale ressaltar que essa é uma característica ainda muito comum dentro da atividade aquática no Brasil. Dentre os fatores que justificam essa situação, os principais são a falta de garantias por parte dos piscicultores e dificuldade em cumprir exigências burocráticas tais como licenciamento ambiental. As grandes empresas utilizam capital próprio e/ou linhas do BNDES para construção de frigorífico. Na Tabela 5.3 estão descritas as principais características das tilápiculturas deste Polo.

Tabela 5.3. Principais características das tilápiculturas do Polo de UH Ilha Solteira.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilização de financiamento bancário</td>
<td>Poucos piscicultores</td>
</tr>
<tr>
<td>Status da área em terra</td>
<td>Arrendada</td>
</tr>
<tr>
<td>Assistência técnica pública</td>
<td>Sim</td>
</tr>
<tr>
<td>Participação em organização produtiva</td>
<td>Alto nível de participação</td>
</tr>
<tr>
<td>Representação política na região</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Existe em São Paulo o Fundo de Expansão do Agronegócio (FEAP) ligado a Secretaria de Agricultura que possui linhas de crédito voltadas para produtores que têm renda anual até R $600.000, com predominância de renda oriunda da atividade rural.

5.3.3. Caracterização tecnológica

A presença de fornecedores de medicamentos e a ocorrência de assistência técnica favorecem a adoção de vacina pelos produtores. Essa adoção é gradativa, representando atualmente 30% dos produtores, índice maior do que em outros polos de tilápia que utilizam o mesmo sistema de cultivo. Ainda que a maioria dos piscicultores deste Polo considere importante vacinar os juvenis, o fator financeiro é o principal motor desta decisão, já que o preço do juvenil vacinado é 25% maior do que o não vacinado. Na maioria das vezes, a vacinação é oferecida pela alevinagem (Tabela 5.4), mas alguns produtores que realizam a recría em suas propriedades compram a vacina e contratam mão de obra diarista para a vacinação.

Tabela 5.4. Principais características da tilápicultura do Polo UH Ilha Solteira.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principais tipos de tanque-rede</td>
<td>6 a 108 m³, havendo tanques de grande volume (20x20)</td>
</tr>
<tr>
<td>Principais gargalos ambientais</td>
<td>Instabilidade do volume hídrico em períodos de estiagens prolongadas</td>
</tr>
<tr>
<td>Sazonalidade ao longo do ano</td>
<td>Sim</td>
</tr>
<tr>
<td>Duração do ciclo (com juvenil de 1 g e peso médio de abate de 750 g)</td>
<td>210 dias</td>
</tr>
<tr>
<td>Densidade final (Kg peso vivo/m³)</td>
<td>80 a 100kg/m³</td>
</tr>
<tr>
<td>Uso de vacina</td>
<td>Sim. Porém constitui ainda uma tecnologia em fase inicial de assimilação pelos piscicultores</td>
</tr>
<tr>
<td>Taxa de conversão alimentar</td>
<td>1,6 (para a produção de 750 g)</td>
</tr>
<tr>
<td>Observação do mexilhão dourado</td>
<td>Sim. Porém o tipo de manejo e tempo de uso de cada gaiola não permite crescimento demasiado do mexilhão, não causando danos graves à produção.</td>
</tr>
</tbody>
</table>
O Polo é um dos mais bem equipados tecnologicamente. Grandes e médias empresas têm investido em novas tecnologias voltadas para a produção de tilápias, no entanto, piscicultores do Polo demandam da pesquisa inovações tecnológicas que aumentem a produtividade e diminuam os custos de produção. Ao mesmo tempo em que se observa o uso de tanques-rede de grande volume, alimentadores automáticos acionados por placas solares, aparelhos para despesca e barcos de apoio, as tecnologias mais difundidas são as mais baratas, como: tanques-rede de grande volume (108 m³) produzidos na propriedade, plataforma de manejo para despesca manual, classificadores com ou sem contadores e software de manejo (Tabela 5.5).

Tabela 5.5. Tendências das tecnologias aplicadas à produção de tilápias no Polo de Ilha Solteira.

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Principais impacts</th>
<th>Valor estimado da tecnologia*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque-rede de grande volume</td>
<td>Ganhos de escala com reflexos na redução de mão de obra, aumento da produção e otimização logística</td>
<td>R$ 130.000,00 (tanque de 20x20x5)</td>
</tr>
<tr>
<td>Alimentador automático</td>
<td>Redução de custos de mão de obra, maior gerenciamento e precisão na oferta de alimento</td>
<td>R$ 3.000,00/cada tanque</td>
</tr>
<tr>
<td>Despesca mecanizada</td>
<td>Redução de custos de mão de obra e otimização logística. Há diferentes soluções para essa tecnologia, desde uso de guindastes</td>
<td></td>
</tr>
<tr>
<td>Classificação automática</td>
<td>Redução de custos de mão de obra, e otimização redução do manuseio e tempo de manejo dos peixes</td>
<td>R$ 40.000,00</td>
</tr>
<tr>
<td>Software de gestão</td>
<td>Reduz erros e custos de produção através do controle e maior gerenciamento da produção</td>
<td>R$ 7.000,00 (Normalmente há um custo de implantação e uma mensalidade)</td>
</tr>
<tr>
<td>Placas solares para automação do alimentador automático</td>
<td>Reduz custos com energia e mão-de-obra, permitindo uma semi-automação do sistema de alimentação.</td>
<td>R$ 1.500,00</td>
</tr>
</tbody>
</table>

*Valores de julho de 2015.

5.3.4. Agregação de valor e estrutura de mercado

A agregação de valor da cadeia da tilápias é favorecida pela própria estrutura de cluster31 deste Polo.

Atualmente o Polo de Ilha Solteira conta com cinco frigoríficos em operação e um inativo no momento, sendo elas: GeneSeas (40 toneladas/dia), Brazilian Fish (25 toneladas/dia), Supreme (5 t/dia), Rei do Peixe (2 t/dia), Eliel (2 t/dia), e Zippy (inativado). Capacidade de processamento atual é de aproximadamente 1.600 toneladas de tilápias mensais com o planejamento de dobrar esse valor em curto prazo. Tais frigoríficos são empresas verticalizadas que utilizam entre 60 e 70% do seu potencial de processamento com a produção própria, o restante é comprado de produtores da região, representando o principal mercado para os piscicultores deste Polo. Entretanto, por serem verticalizadas, algumas dessas empresas demandam de seus fornecedores que comprim suas rações e selecionam produtores que produzam peixes com rendimento de carcaça mínimo de 30%, verticalizando a produção e dominando a governança local.

É importante ressaltar o impacto social do elo de processamento, tendo em vista ser uma atividade que demanda um grande efetivo de trabalhadores. Cada indústria de processamento média a grande, emprega entre 130 a 164 funcionários da região.

Além de gerar empregos diretos, as unidades de processamento também viabilizam as indústrias de ração por meio do fornecimento de óleo e farinha obtidos dos resíduos do abate de tilápias. Esse efeito de encadeamento gera importantes efeitos que resultam não apenas em ganhos econômicos, inclusive com mais geração de empregos, mas também ambientais, uma vez que os resíduos são aproveitados.

31 Um cluster, no mundo da indústria, é uma concentração de empresas que se comunicam por possuírem características semelhantes e coabitarem no mesmo local. Elas colaboram entre si e, assim, tornam-se mais eficientes (PORTER, 1990).
As Figuras 5.9 e 5.10 ilustram a presença de frigoríficos e fábrica de ração deste Polo.

Figura 5.9. Empresa de processamento de tilápia Brazilian Fish e sua vitrine de produtos.

O Polo coloca no mercado 500 toneladas mensais de produtos da tilápia processados, sendo o principal o filé congelado. Há, no entanto, uma grande gama de produtos ofertados, como: filés frescos embalados à vácuo, outros tipos de corte, pratos semiprontos, peles para pururuca etc. Além disso, as indústrias de processamento também comercializam subprodutos para empresas de cosmético e para fábricas de ração da região.

Além disso, as empresas de processamento tentam driblar qualquer concorrência através da oferta de produtos diferenciados, como filés embalados a vácuo e pratos semiprontos (Figura 5.11).

Figura 5.11. Produtos semiprontos produzidos no Polo.

5.3.5. Infraestrutura do Polo

Atualmente, o Polo conta com duas fábricas de ração (50.000 t/ano, ambas), cinco centrais de alevinagem (2 milhões de sementes/ano), cinco frigoríficos (processamento 1.600 toneladas mensais), além da presença de representantes de medicamentos e equipamentos.

As indústrias deste Polo atingem grandes centros consumidores dos estados do Mato Grosso, Mato Grosso do Sul, Minas Gerais, Goiás, Paraná e São Paulo. Através de análises espaciais, realizadas em Sistema de Informações Geográficas, foi gerado um raio de 450 km no entorno do polígono dos municípios do Polo de Ilha Solteira. Todos os municípios dentro deste raio com população acima de 250.000 habitantes foram destacados. Além dos
municípios logísticamente favorecidos pela proximidade do Polo, outros centros com demografia superior a 700.000 habitantes e capitais de estados circunvizinhos também foram destacados. O mapa de abrangência do Polo de Tilapicultura de Ilha Solteira (Figura 5.12) sobre os grandes centros econômicos em seu entorno foi elaborado considerando aspectos logísticos, demográficos e de importância socioeconômica. Além das rodovias estaduais e federais que cortam a região, a maioria em boa condição e duplicada, a infraestrutura aérea conta com aeroportos internacionais (Campinas, São José dos Campos, Guarulhos), nacionais (Congonhas, São José do Rio Preto, Ribeirão Preto), além de diversos aeroportos estaduais. A Figura 5.13 apresenta os sistemas rodoviários e aeroviários dos estados de São Paulo e Mato Grosso do Sul, que cercam o Polo.

Figura 5.12. Mapa de Abrangência do Polo de Tilapicultura de Ilha Solteira, incluindo os municípios de Cuiabá (MT), Campo Grande (MS), Goiânia, Aparecida de Goiânia e Anápolis (GO), Uberaba, Uberlândia, Belo Horizonte, Betim, Ribeirão das Neves e Contagem (MG) e São Paulo, Guarulhos, Sorocaba, Limeira, Campinas, Piracicaba, Bauru, Ribeirão Preto, Franca e São José do Rio Preto (SP).

Além das rodovias estaduais e federais que cortam a região, a maioria em boa condição e duplicada, a infraestrutura aérea conta com aeroportos internacionais (Campinas, São José dos Campos, Guarulhos), nacionais (Congonhas, São José do Rio Preto, Ribeirão Preto), além de diversos aeroportos estaduais. A Figura 5.13 apresenta os sistemas rodoviários e aeroviários dos estados de São Paulo e Mato Grosso do Sul, que cercam o Polo.

Figura 5.13. Sistema rodoviário sob jurisdição do DNIT (federal e estaduais) e aeroviário dos estados de São Paulo e Mato Grosso do Sul enfatizando a potencial logística para escoamento da produção do Polo de Ilha Solteira.
A região é rota de uma importante hidrovia, a hidrovia Tietê-Paraná, com intenso movimento através do canal artificial de Pereira Barreto, que liga as barragens de Três Irmãos, no rio Tietê, ao reservatório da Ilha Solteira, no rio Paraná. A hidrovia é considerada muito importante para o escoamento da produção agrícola das regiões do sul, sudeste e centro-oeste. Ainda, com projetos de ampliação e melhorias, a entrada em operação desta hidrovia impulsionou a implantação de 23 polos industriais, 17 polos turísticos e 12 polos de distribuição.

O eixo ferroviário também se mostra um potencial logístico para a distribuição deste Polo, passando pelas adjacências dos reservatórios de Ilha Solteira e Jupiá.

A Figura 5.14 ilustra o sistema hidroviário e ferroviário dos estados que cercam o Polo de tilapicultura de Ilha Solteira.

Figura 5.14. Sistema hidroviário e ferroviário dos estados que cercam o Polo de Tilapicultura de Ilha Solteira.

33 Food Service é o termo usado para o fornecimento de itens alimentícios para grandes redes de restaurante, hotéis, transportes aéreos e marítimos, entre outros.
5.3.6. Mercado

Apesar da presença de frigoríficos na região, estima-se que 40% da produção do Polo (aproximadamente 11.000 toneladas) não passem pelos frigoríficos, tendo como destino os pesque-pagues ou intermediários. Tais intermediários levam para redes food service, importante canal de venda do Polo, além de abastecerem outras regiões, como o Nordeste, feiras, Ceagesp, etc. Possuindo grande variação de tamanho e estrutura, os intermediários envolvem-se proporcionalmente com produtores maiores ou menores.

No que se refere aos compradores, há uma concentração da venda da produção em um ou poucos clientes. Em geral os piscicultores possuem entre 1 e 10 compradores. Essa situação de certo modo reflete a importância dos frigoríficos como o principal mercado para os piscicultores deste Polo. No entanto, além dos frigoríficos, piscicultores diversificam a sua venda com intermediários que levam a produção para outros centros consumidores regionais, Companhia de Entrepotos e Armazéns Gerais do Estado de São Paulo (CEAGESP), Central de Abastecimento do Rio de Janeiro (CEASA-RJ), além de pesque-pagues.

Como observado na Tabela 5.6, o grande produtor destina a sua produção ao frigorífico, mesmo que seja próprio. Ou seja, não é o produtor que vende o produto filé congelado.

No geral, ainda que os produtores mantenham uma relação de fidelidade com seus compradores através da formalização por meio de contratos, sentem-se mais seguros em diversificar o seu mercado.

Tabela 5.6. Principais características do mercado de tilápias no Polo da UH Ilha Solteira.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal forma de apresentação da tilápia</td>
<td>Viva</td>
</tr>
<tr>
<td>(venda pelo produtor*)</td>
<td></td>
</tr>
<tr>
<td>Preço médio de venda</td>
<td>R$ 4,80/kg (R$ 4, 65/kg para os frigoríficos)</td>
</tr>
<tr>
<td>pelo produtor*</td>
<td></td>
</tr>
<tr>
<td>Custo médio de produção*</td>
<td>R$ 3,70/kg</td>
</tr>
<tr>
<td>Preço médio do filé nos frigoríficos locais*</td>
<td>R$ 22,00/kg</td>
</tr>
<tr>
<td>Concentração de compradores</td>
<td>Alta</td>
</tr>
<tr>
<td>Freqüência de venda de filé pelos produtores</td>
<td>Semanal</td>
</tr>
<tr>
<td>Existência de contratos com compradores</td>
<td>Sim, mas não sempre.</td>
</tr>
<tr>
<td>Localização dos compradores</td>
<td>No raio de 150 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classificação dos produtores</th>
<th>Principais compradores</th>
<th>Principais formas de apresentação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequenos</td>
<td>Frigoríficos, pesque-pagues e intermediários</td>
<td>Inteiro fresco e vivo</td>
</tr>
<tr>
<td>Médios</td>
<td>Frigoríficos, intermediários e atacadistas</td>
<td>Inteiro fresco e vivo</td>
</tr>
<tr>
<td>Grandes (processam seus peixes)</td>
<td>Redes de supermercados, pontos de venda direto para o consumidor e Food Service</td>
<td>Filé congelado</td>
</tr>
</tbody>
</table>

*Valores referentes a 2015.

As vendas, cuja oferta vem aumentando aproximadamente 20% a cada ano segundo a CATI, são realizadas semanalmente e o pagamento para o produtor é realizado à vista (geralmente venda para intermediários) ou com prazo de até 30 dias (determinado pelos frigoríficos).

33 O preço do filé de tilápia varia de acordo com o acabamento dado na linha de produção, podendo gerar produtos com diferentes qualidades e preços. O preço médio refere-se ao produto mais frequentemente produzido na região; filés, com corte V, congelados.
34 Programa de Aquisição de Alimentos.
35 Programa Nacional de Alimentação Escolar.
A rentabilidade da produção de tilápia no Polo da Ilha Solteira variou entre 15 e 22% em 2015, dada a diversidade de produtores e seus mercados. Essa grande variação pode ter relação com dois fatores observados no período: a) ambiental – o reservatório de Ilha Solteira sofreu baixas consecutivas em seu nível devido às longas estiagens nos três anos anteriores. Produtores sofreram com essa crise hídrica, variando o grau de consequência desses fatores em seus cultivos, de acordo com a localização de suas áreas, o que afetou seus custos e rentabilidade. B) financeiro – maior aumento dos insumos (20%) do que do preço de venda do peixe (7%) ao longo do ano de 2015, segundo dados da CATI.

Os intermediários que atuam no Polo distribuem o pescado nos principais canais de varejo do mercado regional, sendo os principais as feiras livres, restaurantes, peixarias e supermercados. Localizado dentro de um raio de aproximadamente 500 km, esse mercado abrange, sobretudo, municípios do interior dos estados que fazem fronteira com este Polo (MS, MG, GO). Recentemente, devido a problemas na produção de tilápia no Ceará causado pela estiagem, parte da produção de Ilha Solteira é comercializada também neste estado, em especial na capital Fortaleza.

O mercado institucional (ex.: PAA²⁴ e PNAE)⁵⁳ não é utilizado pelos piscicultores do Polo, pois os piscicultores deste Polo não se encaixam na definição e critérios do PRONAF de piscicultor familiar, e, ainda que fossem classificados para tal (piscicultor familiar), o pescado teria que ser processando em instalação com inspeção sanitária para ser adquirido pelo PNAE e PAA. Dessa forma, o mercado institucional fica restrito ao de cunho empresarial (refeição de presídios, por exemplo).

Com a desvalorização do real frente ao dólar, alguns frigoríficos passaram a exportar, no entanto, o grande mercado interno brasileiro continua sendo o principal mercado dessas indústrias.

Restaurantes/supermercados representam o principal canal de venda da tilápia no mercado local (municípios do Polo e vizinhos), aproveitando a estrutura de Polo turístico da região. Há, ainda, frigoríficos que possuem lojas próprias, inclusive franchising, encurtando a cadeia ao vender diretamente para o consumidor.

Pesque-pagues do estado e regiões vizinhas também são um mercado importante da tilápia para os produtores deste Polo. Com estruturas que vão além da pesca, como restaurantes, venda de produtos semiprontos, parque infantil, funcionando como um clube para as famílias que passam o dia nesse tipo de espaço. Há 51 pesque-pagues em um raio de 300 km do Polo de Ilha Solteira, que consomem aproximadamente 500 toneladas de tilápia deste Polo por ano, segundo estimativa da CATI, o que daria menos de 1 t/mês por pesque-pague, valor relativamente pequeno para esse tipo de mercado. No entanto, alguns pesque-pagues possuem alguma produção e há também fornecedores de outros polos disputando esse mercado já tradicional na região.

5.4. Governança e estrutura da cadeia de valor da tilápia

5.4.1. Estrutura da cadeia de suprimentos

O Polo conta com duas fábricas de ração que produzem 100% ração para tilápia, totalizando 3.000 t/mês. As fábricas possuem estruturas diferentes de produção. Enquanto uma possui estrutura compacta, automatizada, empregando sete pessoas e produzindo basicamente para o seu consumo próprio (empresa verticalizada), a outra emprega 120 pessoas e distribui para grande parte dos piscicultores do Polo usando a propaganda de que a ração vendida é a mesma utilizada em suas fazendas de criação.

Sessenta por cento da ração produzida são vendidas num raio de 200 km (abrangendo 80% dos piscicultores dentro desse raio), 25% é entregue em Minas Gerais e 15% em Goiás. A relação comercial entre piscicultores e a indústria é de fidelidade e confiança. Em todo o Polo, a logística da entrega e distribuição é por conta da distribuidora / fábrica de ração, que até o raio de 100 km não cobra a mais pelo transporte, acima desta distância, algumas aumentam o valor em R$ 0,50/25 kg (saco). Os principais insumos das rações fabricadas no Polo vêm de Mato Grosso e Goiás, já que a base da ração é soja, milho e trigo, já o óleo e a farinha de peixe são obtidos nos frigoríficos do Polo.
A maioria das rações comerciais oferece mais de uma linha de produto, havendo sempre uma linha Premium, na qual são incluídos fatores de melhora da digestão, melhora da absorção, estimulador da imunidade, entre outros fatores, encarando a ração, mas sendo uma opção para o produtor. Apesar do grande número de compradores da ração produzida neste Polo, a alta produção de tilápia leva a uma disputa de pelo menos 8 marcas diferentes, a maioria produzida em outras regiões do estado.

Quanto à produção de alevinos, o Polo conta com quatro produtores de alevinos, produzindo um total de 30 milhões de alevinos/ano, além da produção de juvenis pela fazenda da Aquabel neste Polo (principal fornecedora de juvenis no Polo, em 2015).

Uma imagem de uma central de alevinagem deste Polo pode ser vista na Figura 5.15 e refere-se ao Portal do Sol, localizada em Santa Clara do Oeste.

Figura 5.15. Produção de sementes de tilápia em Santa Clara do Oeste, SP.

As produção de alevinos dos principais laboratórios de alevinagem do Polo, sua produção e localização encontram-se na Tabela 5.7.

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Município</th>
<th>Principal mercado</th>
<th>Linhagem</th>
<th>Produção anual de sementes (unidades)</th>
<th>Realiza Programa de melhoramento genético</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sta. Clara do Oeste</td>
<td>Mercado regional</td>
<td>GiFT Aquamérica</td>
<td>3.000.000</td>
<td>Sim</td>
</tr>
<tr>
<td>B</td>
<td>Rubinéia</td>
<td>Mercado regional</td>
<td>GiFT Aquamérica</td>
<td>22.000.000</td>
<td>Sim</td>
</tr>
<tr>
<td>C</td>
<td>Sta. Clara do Oeste</td>
<td>Mercado regional</td>
<td>GiFT Aquamérica</td>
<td>6.000.000*</td>
<td>Sim</td>
</tr>
<tr>
<td>D</td>
<td>Santa Rita do Oeste, Fronteiras</td>
<td>Mercado regional</td>
<td>GiFT Aquamérica</td>
<td>2.000.000</td>
<td>Sim</td>
</tr>
</tbody>
</table>

*Estrutura fechada no momento – sem produção.

A maioria dos tanques-rede utilizados no Polo da Ilha Solteira é produzida no Polo, sendo a confecção dos tanques realizada na própria propriedade com telas, boias e aramados comprados na região. Com exceção dos tanques de grande volume, importados do Chile. A Tabela 5.8 apresenta a origem dos insumos utilizados neste Polo.

<table>
<thead>
<tr>
<th>Insumo/Equipamento</th>
<th>Local de produção do insumo ou equipamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>Dentro do Polo 80%</td>
</tr>
<tr>
<td>Medicamentos</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Classificador de peixes</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Software de gestão de produção</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Tanque-rede</td>
<td>Dentro do Polo A maioria dos tanques-rede é produzida no Polo, inclusive os insumos para a sua construção.</td>
</tr>
<tr>
<td>Tanques de transporte</td>
<td>Dentro e fora do Polo Produzidos na região ou em estados do sul.</td>
</tr>
<tr>
<td>Alevinos</td>
<td>Dentro e fora do Polo O Polo conta com centrais alevinagem de grande porte, porém alguns piscicultores buscam este insumo em outras regiões.</td>
</tr>
</tbody>
</table>
5.4.2. Governança da cadeia de valor

A principal característica da governança da cadeia produtiva da tilápiã no Polo da Ilha Solteira se refere à configuração de cluster, com presença de várias empresas relacionadas no Polo, incluindo as grandes empresas verticalizadas que interagem com os demais produtores através da venda de ração e compra dos peixes para processamento. Estas empresas são um importante mercado para os demais piscicultores, possuem grande escala de produção e peso econômico, exercendo influência direta sobre a governança da cadeia produtiva.

Tanto o foodservice quantos os hiper e supermercados são segmentos bem estruturados e eficientes, com centrais de distribuição que usam cadeia de frio e, muitas vezes, cumpram rigorosos padrões de qualidade, inclusive alguns contam com SIF. A força desse canal de comercialização no Polo da Ilha Solteira tem grande poder sobre os preços, uma vez que compram volumes relativamente altos, conseguindo negociar preços e condições e trabalham com contratos de fornecimento.

Figura 5.16. Representação esquemática da cadeia produtiva da tilápiã no Polo da Ilha Solteira.
5.4.3. Análise competitiva do Polo da Ilha Solteira

A análise das cinco forças de Michael Porter constitui uma ferramenta para o estudo competitivo de uma determinada indústria. No presente caso, o foco da análise é o segmento de engorda e seus principais atores – os piscicultores.

As barreiras à entrada de novos produtores na cadeia produtiva são consideradas altas, pois apesar do acesso às tecnologias de produção ser relativamente fácil, o processo de obtenção de novas áreas aquícolas nos reservatórios da região é bastante difícil. As dificuldades estão relacionadas a não autorização de solicitação de novas áreas aquícolas por parte dos órgãos competentes, sob o argumento de esgotamento da capacidade de suporte no reservatório da Ilha Solteira, com possibilidades maiores de crescimento no reservatório de Jupiá.

No que se refere à ameaça de produtos substitutos, verifica-se – à exemplo dos demais polos de tilápia do Brasil - uma elevada competição com produtos substitutos, principalmente filés de pescados importados. A competição com pescados oriundos da pesca extrativa nacional não representa um produto substituto importante devido ao maior preço e menor regularidade destes comparado com a produção de tilápia. A análise competitiva do Polo de tilápicultura da Ilha Solteira a partir do modelo de cinco forças de Porter contá na Figura 5.17.

O poder de negociação dos fornecedores (produtores) é médio. Os frigoríficos compram grande quantidade de tilápia do Polo, garantindo contratos formais e aumento de venda, mas não absorvem toda a produção do Polo. Verifica-se então, atuação de um grande número de intermediários que, por um lado favorece o equilíbrio de forças entre piscicultor e comprador, por outro dificulta o aumento de escala dos produtores baseado no estabelecimento de contratos formais com maiores volumes.

Figura 5.17. Análise competitiva do Polo de tilápicultura da Ilha Solteira a partir do modelo de cinco forças de Porter.

Quanto ao poder de negociação dos fornecedores de insumos, verifica-se uma relação de poder desequilibrada que favorece os piscicultores. Isso se deve ao elevado número de empresas de insumos e equipamentos e, também pelo perfil dos piscicultores, o qual é formado majoritariamente por produtores de médio porte.

Finalmente, percebe-se que o grau de rivalidade entre os piscicultores deste Polo é médio, pois apesar da produção crescente, a região localiza-se próximo a grandes centros comerciais, resultando em uma relação demanda-oferta mais equilibrada.

5.4.4. Distribuição do valor agregado

A análise da divisão do valor agregado ao longo da cadeia produtiva permite o entendimento sobre como cada um dos agentes se apropria do capital acumulado desde a produção até a venda do bem ao consumidor final. Um esquema representativo do valor agregado na cadeia produtiva da tilápia neste Polo consta na Figura 5.18.
5.5. Arcabouço legal e regulatório

5.5.1. Licenciamento ambiental e outorga da água

No âmbito legal e regulatório, os aspectos que mais limitaram o crescimento produtivo da tilápiculture no Polo até o ano de 2016 referem-se ao processo de licenciamento ambiental e à cessão de uso das águas públicas da União (área aquícola). Ambos os processos foram muito burocráticos e dispendiosos, gerando elevados custos de transação para os piscicultores. Na Tabela 5.9, ao lado, estão apresentados os aspectos gerais do processo regulatório enfrentados pelos produtores até o ano de 2016.

Para licenciar, os órgãos responsáveis solicitavam o termo de cessão de uso da área, que demora a sair, amarrando, assim o processo de regularização das produções, como ocorre para as demais regiões que trabalham com tanques-rede em águas públicas da União. O Decreto nº 60.582, de 27 de junho de 2014 do estado de SP, publicado pelo Governo do Estado de São Paulo, simplificou o procedimento de licenciamento para as pisciculturas com somatória de volume dos tanques-rede ou gaiolas iguais ou inferiores a 1.000 m³ junto a CETESB, com as etapas de licenciamento prévio e de instalação conduzidas de forma concomitante. O mesmo Decreto determinava que a Licença de Operação tivesse um prazo de validade de cinco anos.

Os valores apenas do licenciamento das áreas custavam na CETESB R$ R$ 8.774,50 (350 UFESP) para empreendimentos acima de 5.000 m³, R$ 2.507,00 (100 UFESP) para empreendimentos de 1.000 a 5.000 m³ e R$ 1.253,50 (50 UFESP) para empreendimentos menores que 1.000 m³. Essas taxas são cobradas individualmente para cada modalidade de licença (prévia, instalação, operação e renovação). Após o licenciamento, as OEMA exigem do produtor o monitoramento semestral da água de cultivo realizado em laboratórios credenciados no Ministério da Agricultura, que custa, em média, R$ 6.000,00 cada análise realizada (R$ 12.000,00 / ano).

Figura 5.18. Divisão do valor agregado na cadeia produtiva da tilápia no Polo da Ilha Solteira.

A análise de divisão do valor agregado do filé de tilápia neste Polo mostra que os supermercados participam com a maior parcela, ou seja, 47% do valor final do produto vendido ao consumidor final. Os produtores e processadores respondem respectivamente 8 e 14% do valor final.
A outorga da água pelo órgão responsável Agencia Nacional das Águas (ANA), é uma das fases que compõe a Cessão da área aquícola. Ocorre que para o reservatório da UHE de Ilha Solteira a quantidades de pedido de área ultrapassa a capacidade de suporte do reservatório. Nesse caso, a ANA está realizando um levantamento do potencial produtivo das solicitações de área para uma reordenação das outorgas de água. Esse processo tem sido lento, favorecendo o atraso das regularizações das pisciculturas de tanques-redes do Polo.

Além da grande burocracia, há sempre uma insegurança quanto ao cultivo da tilápia por ser espécie exótica, apesar de ser considerada estabelecida no rio Paraná e estar liberada para cultivo segundo a portaria federal (BRASIL, 1998). Além disso, em todo o estado de São Paulo a tilápia foi amplamente utilizada para povoamento nos reservatórios estaduais desde a década de 50, como estímulo à pesca artesanal e à segurança alimentar. Dessa forma, o setor produtivo está sempre procurando assegurar o cultivo dessa importante espécie da aquicultura brasileira através de ações junto à legislação do estado.

Com a edição do Decreto 62.243, de 1 de novembro de 2016 (SÃO PAULO, 2016), o processo de licenciamento ambiental da aquicultura no estado de São Paulo foi muito facilitado., Elaborado de forma participativa entre o setor produtivo e os técnicos dos órgãos oficiais do Estado, tornando-o mais ágil e menos oneroso do que prevalecia até então.

As principais alterações no processo de licenciamento, definidas por esse Decreto, para produtores em Águas Públicas da União foi a permissão para que o interessado iniciie o processo de licenciamento ambiental apenas com o protocolo da solicitação de uso de águas da União e pedido de outorga, mesmo não tendo ainda o termo de cessão de uso e a outorga, resolvendo a questão da legalização do ponto de vista ambiental, para muitos piscicultores que estão em plena produção há vários anos.

Para simplificar o processo de licenciamento, o Decreto separa os empreendimentos em 3 níveis:

- pequeno porte (tanques redes com volume total até 1.000 m³) são dispensados de licenciamento;
- médio porte (1.000 a 5.000 m³) é feito o licenciamento simplificado e
- grande porte (acima de 5.000 m³) que é feito pelo licenciamento ordinário.

Esse Decreto, além de flexibilizar as exigências para início do processo de licenciamento ambiental da aquicultura no estado de São Paulo, simplificando os procedimentos, baixou as taxas de licenciamento para:
• 50 UFESP (R$ 1.253,50) em se tratando de empreendimentos acima de 5.000 m³, para cada etapa de licenciamento;
• 25 UFESP (R$ 626,75) para empreendimentos com volume total de 1.000 a 5.000 m³, para cada etapa de licenciamento.

Portanto, são valores muito abaixo do que era cobrado antes de novembro de 2016.

O Decreto 60.582/2016 reconhece a aquicultura como sendo atividade de interesse socioeconômico no estado de São Paulo e corroborou com a lei federal assegurando o cultivo da tilápias neste polo. No entanto, sendo o tema recorrente, o setor está sempre alerta à necessidade de renovação do Decreto que em junho de 2016 foi revisado por um grupo de trabalho ligado à Câmara Setorial do Pescado da Secretaria de Estado da Agricultura e Abastecimento. Para colaborar com essas e outras decisões ambientais, o setor pleiteia a participação no CONSEMA (Conselho Estadual de Meio Ambiente de São Paulo).

O lado sul mato-grossense e o cultivo no reservatório Ilha Solteira está favorecido pela licitação com emissão de cessão de uso de Parques Aquilcôa. Além disso, até 2016, o IMASUL foi menos burocrático e mais ágil, favorecendo a instalação dos cultivos e atrair o investidores para essa margem do Polo.

5.5.2. Políticas públicas de fomento e extensão

A Secretaria de Agricultura e Abastecimento do Estado de São Paulo tem grande atuação no desenvolvimento da piscicultura através de suas coordenações e institutos.

A Coordenadoria de Assistência Técnica Integral (CATI) é responsável pela atuação na linha de frente, tendo as Casas de Agricultura presentes em todos os municípios do Polo produtivo de Ilha Solteira. O Projeto Aqüicultura CATI atua na capacitação de piscicultores e trabalhadores, contribui para organização do setor incentivando e apoia a constituição de associações e cooperativas e presta assistência e orientação técnica visando a adoção de boas práticas de produção.

A APTA, órgão de pesquisas da Secretaria Estadual também tem grande atuação no Polo, através do Centro de Pesquisa do Pescado Continental do Instituto de Pesca localizado em São José do Rio Preto, cujos pesquisadores vêm desenvolvendo vários trabalhos na área de abrangência do Polo, com grande contribuição no desenvolvimento de técnicas de produção, manejo nutricional e sanitário, monitoramento da qualidade de água, entre outras ações.

A Universidade Estadual Paulista (UNESP), com campi na cidade de Ilha Solteira, em Dracena e outros municípios do estado, como em Jaboticabal onde se localiza o Centro de Aquicultura da UNESP (CAUNESP) além da área educacional, desenvolve pesquisas envolvendo piscicultores instalados no Polo.

A Coordenadoria de Defesa Agropecuária, também pertencente à Secretaria de Agricultura e Abastecimento do Estado de São Paulo, atua na prevenção de zoonoses, entre outras atribuições e é a responsável pela emissão das guias de transporte de peixes vivos.

5.5.2.1. Frigorífico comunitário

A Prefeitura de Três Fronteiras, com apoio do Consórcio de Piscicultura, captou recursos do Governo Federal (extinto Ministério da Pesca e Aquicultura) e estadual (Secretaria de Desenvolvimento Econômico) e construiu um frigorífico com capacidade de abate de 5 toneladas por dia, para ser utilizado de forma comunitária pelos pequenos piscicultores da região. O equipamento foi cedido, através de edital público, para empresa que atua há vários anos na comercialização de pescado, estabelecendo importante parceria público privada visando melhor escoamento da produção desses pequenos produtores.

A proximidade deste Polo com centros de pesquisa e universidades da área de atuação favorece o setor através do apoio na assistência técnica e difusão de tecnologias, além de apoio laboratorial. As principais instituições atuantes neste Polo estão apresentadas na Tabela 5.10.

Nos últimos anos o preço dos insumos tem aumentado mais do que o preço de venda da tilápia, para exemplificar, em 2015 o preço da ração (insumo de maior peso nos custos de produção) teve um aumento de 20% enquanto o preço da tilápia teve um aumento de apenas 8% no mesmo período. Dessa forma, o produtor deste Polo pretende trabalhar na eficiência produtiva para que não veja a sua margem de lucro reduzir de forma que fique insustentável. A sazonalidade do fornecimento dos alevinos de tilápia é um problema em todo o país e necessita de maior produção e tecnologia para trabalhar esse gargalo.

Tabela 5.11. Principais gargalos do Polo de tilápicultura da Ilha Solteira em ordem de demanda.

<table>
<thead>
<tr>
<th>Gargalo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perda de margem de lucratividade</td>
<td>Aumentos dos preços dos insumos e baixa evolução dos preços de venda.</td>
</tr>
<tr>
<td>Sazonalidade no fornecimento de alevinos</td>
<td>- Necessidade de aumentar a produção de alevinos com uso de tecnologias que permitam que a produção se mantenha no inverno. - Necessidade de linhagens melhoradas adaptadas ao clima.</td>
</tr>
<tr>
<td>Roubo</td>
<td>- Perdas constantes por roubo. - Aumento do gasto com sistemas de segurança.</td>
</tr>
<tr>
<td>Tecnologia</td>
<td>Demandas para automação com reflexo no custo de produção investimento), exemplo: despesa, alimentação. Além de melhoramento genético.</td>
</tr>
<tr>
<td>Financiamento e crédito</td>
<td>Devido à falta de licenciamento e dificuldade de garantias reais</td>
</tr>
</tbody>
</table>

5.6. Principais gargalos

O Polo da Ilha Solteira é um Polo tecnificado, profissionalizado e com atuação política. (Para os padrões brasileiros) Dessa forma, a visão dos desafios e gargalos do setor volta-se para o refinamento de técnicas e manejo, para a redução dos custos, e, certamente, para a regularização da atividade, que gera insegurança produtiva.

A Tabela 5.11 apresenta os principais gargalos do Polo da Ilha Solteira. A lista abaixo consiste numa tentativa de priorizar os principais gargalos e se baseia na percepção dos atores da cadeia e também em análises conjunturais feitas pela equipe da Embrapa Pesca e Aquicultura. Apesar de estarem separados, é evidente que há uma forte interação entre diversos pontos apresentados. Conforme apresentado, a demora no processo de regularização das áreas aquícolas se destaca como um dos principais problemas do Polo da Ilha Solteira.
5.7. Perspectivas futuras

A Tabela 5.12 apresenta as principais tendências verificadas no Polo da Ilha Solteira. Essa análise prospectiva é importante para orientar novos investimentos e também políticas públicas para o setor.

Tabela 5.12. Principais tendências do Polo da Ilha Solteira

<table>
<thead>
<tr>
<th>Tendência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento da oferta de tilápia</td>
<td>O aumento da oferta resultante da instalação de todas as outorgas solicitadas nos reservatórios do Polo.</td>
</tr>
<tr>
<td>Verticalização da produção</td>
<td>Tendência de mais produtores realizaram processamento próprio e/ou integralização produtor x indústria.</td>
</tr>
<tr>
<td>Melhoria do nível técnico dos piscicultores</td>
<td>Presença de grandes empresas tecnicizadas, assessoria técnica com eventos científicos no Polo, acesso às novas tecnologias melhorando o nível técnico dos produtores.</td>
</tr>
<tr>
<td>Aumento da preocupação por parte dos piscicultores</td>
<td>Os piscicultores tem apresentado uma percepção mais apurada sobre a necessidade de evitar ocorrência de impacto ambiental.</td>
</tr>
<tr>
<td>com a sustentabilidade</td>
<td></td>
</tr>
<tr>
<td>Área de revezamento</td>
<td>Necessidade de áreas para revezamento do cultivo (vazio sanitário) como estratégia de redução dos danos ambientais pela eutrofização das áreas cultivadas.</td>
</tr>
</tbody>
</table>

O preço pago pela tilápia no Polo da Ilha Solteira vem apresentando uma estabilização ao longo dos anos. O aumento da oferta de pescado é o principal fator, mas não o único, que tem influenciado nos preços locais. A proximidade com outros Polos produtivos com menor custo de produção, como o oeste paranaense, faz com que piscicultores e frigoríficos trabalhem para a otimização de seus custos de produção, melhorando eficiência dos processos para aumentarem a competitividade do Polo.

Outra tendência verificada se refere à preocupação dos piscicultores com os eventuais impactos ambientais oriundos da rápida expansão do Polo. Os efeitos das últimas estiagens e aumento da produção tem acentuado a atenção por parte dos piscicultores deste Polo que já sofrem com eutrofização da água das áreas produtivas, sendo em maior ou menor grau dependendo de fatores como profundidade, vento, velocidade da água, geografia do local em que está instalado. Dessa forma, produtores já solicitaram ou consideram solicitar áreas de revezamento para descanso das áreas cultivadas.

Apesar dos gargalos, piscicultores vislumbram crescimento produtivo, solicitação de novas áreas de produção, havendo um otimismo sobre o potencial do Polo. Como pode ser demonstrado ao longo do estudo, há frigoríficos com projetos de investimento em fábricas de ração e de integração produtiva; produtores buscanhichos de mercado, como por exemplo, mercado para tilápias de 2 a 2,5 kg; produtores investindo em recria, entre outras ações.
6. Diagnóstico do Polo de Tilapicultura do Paraná - Norte
6.1. Aspectos gerais

6.1.1. Aspectos geográficos e climáticos do Polo

O Estado do Paraná é um dos principais produtores de tilápia do país. Das 80.868 toneladas de peixes produzidas em 2015, a tilápia representa 91% dessa produção. A produção de tilápia no Paraná está distribuída em três principais polos de produção, localizados nas regiões oeste, norte e leste do estado (Figura 6.1). Os polos do oeste e norte são os mais importantes e respondem respectivamente por 69 e 14% da produção paranaense de peixes, dos quais a tilápia representa 83%, de acordo com dados da Emater-PR. Já, o Polo Leste é importante na produção do pescado de captura e o principal centro de consumo.

O Polo da região norte paranaense é formado por 65 municípios e dividido nas três regiões de Santo Antônio da Platina, Cornélio Procópio e Londrina, sendo esta a mais importante em termos de volume de produção (Figura 6.2). Segundo estimativas da Emater-PR, o Polo produz atualmente cerca de 11.600 toneladas de peixes.

Figura 6.1. Principais polos de tilapicultura do Paraná.
Fonte: Adaptado de IBGE (2017).
Dentre as principais condições favoráveis ao desenvolvimento da tilapicultura no Polo do norte paranaense, destacam-se:

- Disponibilidade de recursos hídricos;
- Localização estratégica, próximo a importantes mercados consumidores com alta renda per capita;
- Boa infraestrutura de transporte.

Apesar de apresentar uma sazonalidade na produção durante o inverno, este Polo conta com boas condições naturais para o cultivo de tilápia no que se refere à disponibilidade de recursos hídricos. Diversos reservatórios estão localizados na calha do rio Paranapanema, entre eles as represas de Capivara, Canoas I, Canos II e Xavantes (Figura 6.3), localizadas nas adjacências de Londrina, Cornélio Procópio e Santo Antônio de Platina e que...

Figura 6.2. Polo de Tilapicultura do norte do Paraná e suas três microrregiões.
Fonte: Adaptado de IBGE (2017).

Figura 6.3. Hidrografia do Polo de Tilapicultura do norte do Paraná.
Segundo dados do Instituto Agronômico do Paraná (IAPAR), a região apresenta precipitação média anual superior a 1.300 mm. Durante os anos de 2015 e 2016 as chuvas se concentraram mais no período de setembro de 2015 a janeiro de 2016, chegando a atingir seu pico em novembro de 2015 (> 450 mm/mês). Já no período de fevereiro de 2016 a junho de 2016 a estiagem predominou. O valor mais baixo chegou a atingir 40 mm/mês em agosto de 2015 (Figura 6.4).

O solo nesta região é diversificado, predominando o solo argiloso na região de Santo Antônio de Platina e porção noroeste da região de Londrina; solos do tipo latossolo, nitossolo, neossolo e gleissolo nesta ordem de ocorrência no leste da região de Londrina, noroeste de Santo Antônio de Platina e região de Cornélio Procópio.

Essas condições permitem que a tilapicultura se desenvolva tanto em sistema de viveiro escavado como em tanque-rede (Figuras 6.5a, 6.5b, 6.5c e 6.5d). No entanto, a piscicultura nessa região se desenvolveu de forma menos intensiva e a expressividade produtiva aconteceu recentemente (a partir de 2007) com o uso dos reservatórios do rio Paranapanema para cultivos intensivos de tilápia em tanques-rede. Dessa forma, atualmente o tanque-rede é o principal sistema de produção de tilápia neste Polo, considerando o volume produzido.

Figura 6.5a, 6.5b, 6.5c e 6.5d. Sistemas de produção de tilápia em viveiro escavado e tanque-rede, Polo do Norte, PR.

O rio Paranapanema na divisa dos estados de São Paulo e do Paraná e abriga diversas hidrelétricas que formam represas com alto potencial produtivo para o pescado.
Atualmente, o maior volume produtivo ocorre nas represas da UHE Taquaruçu, UHE Capivara, UHE Canoa I e II envolvendo os municípios paranaenses de: Alvorada do Sul, Itambaracá, Andirá, Sertaneja, Carlópolis, Primeiro de Maio e Rancho Alegre (Figura 6.7). Em termos de volume de produção, esses são os municípios mais importantes da região norte paranaense, mas os municípios das microrregiões citadas abrigam os demais eixos da cadeia, dessa forma, incluiremos neste diagnóstico as informações da cadeia da tilápia da região norte do estado.

As represas UHE Taquaruçu, UHE Capivara UHE Canoas I e II cobrem uma área de 629 km² com potencial de produção de pelo menos 500.000 toneladas de pescado ao ano, estimativa da EMATER-PR. Sendo represas que funcionam a fio d’água, não alteram muito seu volume com estiagens.

Segundo estimativas do Departamento de Economia Rural da Secretaria de Estado da Agricultura e do Abastecimento do Paraná, no ano de 2015 o Polo produziu 11.600 toneladas de tilápia, apresentando um crescimento de 11% comparativamente ao ano anterior.

Outro aspecto geográfico favorável ao desenvolvimento da tilipicultura nesta região se refere à proximidade com mercados consumidores importantes no Paraná e, sobretudo, no estado de São Paulo. Neste sentido, vale ressaltar que este Polo se situa dentro de uma das regiões mais ricas e industrializadas do Brasil. A presença de consumidores com elevada renda per capita e um consolidado hábito de consumo de pescado, segundo estudos de Antonucci (2016), permitiu aos produtores da região desenvolver um amplo mercado de tilápia processada, principalmente filé.

O elevado nível de desenvolvimento da região – comparado com outros polos de tilipicultura do país – também se reflete na infraestrutura de suporte à cadeia produtiva. A região possui diversos aeroportos e conta com uma das maiores e bem conservadas malhas rodoviárias do Brasil.

6.2. Fatos históricos relevantes para o desenvolvimento do Polo

A produção de tilápia no norte paranaense teve início na década de 1970 com a implantação de cultivos em viveiros escavados. No entanto, o desenvolvimento deste Polo ocorreu de modo mais expressivo durante a década de 1990, a partir do início da produção em sistemas de tanque-rede na represa Capivara no município de Sertaneja. Nesse período, também houve o início da operação da estação de alevinagem da Piscicultura Aquabel, pioneira e importante referência na produção de alevinos de tilápias no Brasil, e a importação de matrizes de tilápia tailandesa, o que contribuiu para o aumento da oferta de formas jovens de tilápia melhoradas geneticamente. A Figura 6.6 ilustra a linha do tempo da produção de tilápias no norte do Paraná.

Com o intuito de reduzir a elevada taxa de consanguinidade do plantel de tilápia, em 1996, a Secretaria da Agricultura e do Abastecimento do Paraná (SEAB), juntamente com a Emater-PR, Instituto Ambiental do Paraná (IAPPR) e Associação Paranaense de Produtores de Alevinos (ALEVINOPAR) realizou a importação de um lote tilápias do Asian Institute of Technology (AIT) de Bangkok, Tailândia. Essa introdução propiciou uma melhora da qualidade genética dos plantéis com ganhos importantes em termos de maior resistência ao frio e melhor rendimento de filé, quando comparada com a pioneira (também chamada de Bouakê por alguns autores) (BARROSO et al., 2015). A partir desta ação outras iniciativas, visando a introdução de novas linhagens de tilápia, foram realizadas: no ano 2000 a Central de Alevinagem da Aquabel, de Rolândia introduziu a GIFT SUPREME e em 2006 a Universidade Estadual de Maringá (UEM) introduziu outras linhagens da família GIFT (BARROSO et al., 2015). Esse histórico fez do Paraná líder nacional em produção de alevinos de tilápia e referência no setor. Hoje a empresa Aquabel está presente em quatro Estados e o seu know how e domínio atraíram os olhares da gigante Aquagen – líder mundial em genética de salmão. Em novembro de 2015 Aquabel foi comprada pela Aquagen Empresa Norueguesa AquaGen que instalará no Brasil a sua sede mundial de melhoramento genético de tilápia, prometendo alavancar o setor produtivo em médio prazo.
Com esse histórico, a produção de tilápia na região sempre foi considerada pelos produtores rurais da área. Com a liberação de uso das águas públicas para uso na aquicultura, o interesse de uso das águas dos reservatórios do rio Paranapanema trouxe empreendedores da região para as margens paranaenses dos reservatórios. Na Tabela 6.1 abaixo, observamos o número de áreas e parques aquícolas em tramite hoje no MAPA, lembrando que as solicitações se referem a ambas as margens, paranaense e paulista.

Na década de 1980, por iniciativa da extinta Cooperativa Agrícola de Cotia, houve uma tentativa de implementação do cultivo do camarão de água doce (*Macrobrachium rosenbergii*) no Estado do Paraná. A experiência não foi bem-sucedida por não haver um modelo definido para essa criação, desmotivando os produtores mobilizados a época. No entanto, a EMATER-PR vislumbrou o potencial de agregação de valor deste produto aos cultivos de tilápia no Estado através do policultivo. Todavia, devido às baixas temperaturas à época da chegada houve uma grande mortalidade das pós-larvas inviabilizando os cultivos. O modelo do policultivo tendo a tilápia (*Oreochromis niloticus*) como principal espécie no viveiro teve início em setembro de 1999 na Piscicultura Aquabel, se estendendo a outros produtores da região até o ano de 2008, quando entrou em declínio não existindo hoje nenhuma propriedade que desenvolva a atividade.

Figura 6.6. Linha do tempo do Polo de tilápicultura do norte do Paraná.

Tabela 6.1. Número de solicitação de áreas aquícolas e parques em trâmite no MAPA em agosto de 2016 nos reservatórios de Canoas I e II e Taquaruçu, rio Paranapanema.

<table>
<thead>
<tr>
<th>Reservatório</th>
<th>Área Aquícola</th>
<th>Parque Aquícola</th>
<th>Unidade Demonstrativa</th>
<th>Total Geral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canoas I</td>
<td>34</td>
<td>3</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Canoas II</td>
<td>18</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Taquaruçu</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Total Geral</td>
<td>56</td>
<td>19</td>
<td>2</td>
<td>77</td>
</tr>
</tbody>
</table>

Fonte: Dados cedidos pelo MAPA.

Entretanto, mesmo com baixa produtividade o policultivo da tilápia (*Oreochromis niloticus*) com o camarão de água doce (*Macrobrachium rosenbergii*) mostra-se interessante, já que permite o aproveitamento integral do ambiente e gera uma renda excedente ao produtor. Segundo a EMATER-PR, há ainda um grande interesse por parte dos produtores em implantar novamente a atividade, pois para muitos dos problemas ocorridos no passado já se tem a solução técnica, sendo necessário implementar um laboratório que atenda a demanda existente por PL.
6.3. Caracterização da tilapicultura

A produção de tilápia representa 45% das espécies cultivadas na região, seguida pelo pacu (42%). Outras espécies como menor representatividade, mas também produzidas na região, são: carpas, bagres e lambari.

Apesar dos tanques-redes serem mais intensivos em volume, as tilapiculturas em viveiro escavado representam 78% das propriedades produtoras de tilápia na região, com aproximadamente 112 pisciculturas ativas, segundo Antonucci (2016) (Figura 6.7).

Figura 6.7. Estrutura da criação de tilápia no norte paranaense e as principais espécies cultivadas.
Fonte: Antonucci (2016).

6.3.1. Perfil dos produtores

Com 143 pisciculturas na região, 125 delas ativas, o perfil dos tilapicultores do norte do Paraná apresenta uma evidente distinção entre os que trabalham em sistemas de tanques-redes daqueles com viveiros escavados. Essa distinção se refere principalmente ao porte dos empreendimentos, tendo os produtores em tanques-redes uma maior produção e um caráter empresarial, enquanto aqueles em viveiros escavados possuem uma produção de pequena escala (81% deles) e com mão de obra familiar. Neste caso, a terra, que é usada para cultivos agropecuários, no qual a tilápia é uma atividade secundária, pertence às famílias há várias gerações. Enquanto os tanques-redes são empreendimentos com tempo médio de 10 anos, com experiências desafiadoras para conquista das regularizações do cultivo. A Tabela 6.2 resume a distinção entre os sistemas de cultivo.

<table>
<thead>
<tr>
<th>Sistema de produção</th>
<th>Tempo médio de experiência (anos)</th>
<th>Volume médio de produção (t/ano)</th>
<th>Produtividade média (kg/m²)</th>
<th>Mão de obra familiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque-redes</td>
<td>10</td>
<td>100 a 400</td>
<td>120</td>
<td>Não</td>
</tr>
<tr>
<td>Viveiro escavado</td>
<td>Mais de 20</td>
<td>30 a 35</td>
<td>5-10</td>
<td>Sim</td>
</tr>
</tbody>
</table>

Fonte: Emater-PR

6.3.2. Características produtivas

A utilização de crédito bancário para financiamento da piscicultura ocorre em aproximadamente 23% dos piscicultores deste Polo, sendo igual a proporção entre piscicultores de tanque-redes e viveiros escavados. A dificuldade de conseguir crédito é explicada pela dificuldade do produtor em apresentar os documentos (principalmente o licenciamento ambiental) solicitados pelos bancos. Neste Polo, apenas 29% das pisciculturas em tanque-redes estão licenciadas. A grande maioria (77%) utiliza recursos próprios para os grandes investimentos necessários para implantação da estrutura para produção de tilápia em tanque-redes, que, em média, se situa em torno de R$ 300 mil para cada 100 tanques-redes de 2x2 incluindo a infraestrutura de apoio em terra. Além disso, os gastos com custeio são também mais elevados do que aqueles em sistemas de viveiro escavado, tendo em vista tratar-se de um sistema mais intenso.

A maioria dos piscicultores possui a posse da terra. Os que arrendam, pagam o valor de R$500,00/ha da terra de beira de represa/mês (valor de 2015).

Apenas 50% dos produtores contam com assistência técnica, seja por meio da Emater, seja através de técnicos privados, empresas que vendem ração também fornecem assistência aos seus clientes.
No que se refere à participação dos piscicultores em organizações de produtores, verifica-se uma baixa adesão às organizações. Apenas 26% dos produtores estão ligados a associações (78%) ou a condomínios de piscicultura36 (22%). No entanto, as associações de piscicultores deste Polo não são associações produtivas, mas sim com finalidade de levantar e discutir questões do setor. A Tabela 6.3 apresenta as principais características produtivas dos tilapicultores do norte do Paraná.

Tabela 6.3. Principais características dos tilapicultores do norte do Paraná.

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilização de financiamento bancário</td>
<td>Pouco. Atuação dos bancos oficiais (Banco do Brasil S.A., BNDES) mas também das cooperativas bancárias (ex.: SICREDI), mas apenas para custeio.</td>
</tr>
<tr>
<td>Status da área em terra</td>
<td>Própria</td>
</tr>
<tr>
<td>Produção exclusiva de tilápia</td>
<td>Sim. Atuação importante da EMATER-PR.</td>
</tr>
<tr>
<td>Participação em organização produtiva</td>
<td>Baixo nível de participação em organizações, apesar de existirem importantes iniciativas associativas (ex.: ANPAQUI,* APINORTE**) como condomínios de piscicultura.</td>
</tr>
</tbody>
</table>

*ANPAQUI = Associação Norte Paranaense de Piscicultores; **APINORTE = Associação de Piscicultores de Maringá.

6.3.3. Caracterização tecnológica

Com a atuação da extensão rural e assistência técnica, além da presença de Universidades que compartilham o apoio técnico na área, o setor tem acesso às informações técnicas e inovações tecnológicas. No entanto, a absorção tecnológica ainda é baixa, havendo demanda de aumento de orientação técnica, de eventos, treinamentos e materiais técnicos para os produtores e fazendas modelo que possam auxiliar na absorção tecnológica do produtor.

Em pesquisa realizada com a participação de técnicos da Emater, 75% dos piscicultores da região utilizam ração comercial, 11% ração caseira e 14% subprodutos; 70% dos piscicultores não possuem kit de análise de água, não realizando o monitoramento necessário para a atividade; 82% não possuem nenhum tipo de equipamento na produção em viveiros escavados, ainda que 57% tenha acompanhamento técnico regular (ANTONUCCI, 2016).

Os tilapicultores que utilizam tanques-rede, em geral utilizam tanques-rede de baixo volume (6 m³) com tendência para trocar por tanques de médio volume (18 m³) (Tabela 6.4).

Tabela 6.4. Principais características das tilapiculturas do norte do Paraná.

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Tanque-rede</th>
<th>Viveiro escavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principais tamanhos das unidades de cultivo</td>
<td>6 m³ (2x2x1,5)</td>
<td>Viveiros em terra com abastecimento e escoamento independentes e tamanho médio entre 0,1 a 0,5 ha.</td>
</tr>
<tr>
<td>Principais limitantes ambientais</td>
<td>Presença de mexilhão dourado*</td>
<td>Piora da qualidade da água durante o cultivo</td>
</tr>
<tr>
<td>Duração do ciclo (0,5 g até 850 g)</td>
<td>240-270 (8-9 meses)</td>
<td>280 dias (10 meses)</td>
</tr>
<tr>
<td>Densidade final</td>
<td>100 kg/m³</td>
<td>3,5 kg/m³</td>
</tr>
<tr>
<td>Uso de vacina</td>
<td>Sim. Porém existem divergências entre piscicultores sobre a viabilidade econômica desta tecnologia</td>
<td>Não</td>
</tr>
<tr>
<td>Uso de outros produtos veterinários</td>
<td>Sim. Antibióticos.</td>
<td>Não.</td>
</tr>
<tr>
<td>Taxa de conversão alimentar</td>
<td>1,65 (para produção de peixes de 900 g)</td>
<td>1,4 (para produção de peixes de 700g)</td>
</tr>
<tr>
<td>Utilização de cadeia do frio (gelo ou caminhão frigorífico)</td>
<td>Sim</td>
<td>Sim</td>
</tr>
</tbody>
</table>

*Mexilhão dourado = Limnoperma fortunei.

Em termos de limitações ambientais, os produtores em tanque-rede têm enfrentado problemas com mexilhão dourado (Figura 6.8) e sazonalidade da produção devido às baixas temperaturas durante o período de maio a agosto.

36 Os condomínios rurais são uma forma de organização associativa de produtores que tem como objetivo promover a exploração comum de bens e serviços, permitindo uma maior racionalização no uso dos fatores de produção. Os condomínios rurais são regulados pela Lei N. 4.591/64. Para efeitos de imposto de renda, os co-proprietários que participam do condomínio são tributados separadamente na proporção da participação que lhes couber.
Apesar dos produtores em tanque-rede apresentarem um maior porte e caráter mais empresarial do que aqueles em viveiro escavado, verifica-se que não há uma grande diferença com relação ao nível de tecnologia utilizado nos dois sistemas de produção.

![Figura 6.8. Infestação de mexilhão dourado em tanque-rede no Norte do PR.](image)

De fato, algumas tecnologias, tais como alimentadores mecanizados, são mais comuns em viveiro escavado do que em tanque-rede. A Tabela 6.5 apresenta uma síntese das principais tecnologias utilizadas no Polo:

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Tanque-rede</th>
<th>Viveiro escavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipamentos para despesca (tobogã, guindaste)</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>Oxímetro</td>
<td>Não</td>
<td>Não</td>
</tr>
<tr>
<td>Programa de gestão produtiva</td>
<td>Não</td>
<td>Não</td>
</tr>
<tr>
<td>Kit de análise de água</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>Aerador</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Alimentador mecanizados</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Classificação automática</td>
<td>Não</td>
<td>Não</td>
</tr>
</tbody>
</table>

Uma das tecnologias utilizadas pelos produtores de tanque-rede é a despesca mecanizada (Figura 6.9). Essa tecnologia oferece ganhos em termos de tempo no processo de despesca e transporte das tilápias.

![Figura 6.9. Equipamento de despesca mecânica em tanque-rede de tilápia, Norte do PR.](image)

6.3.4. Agregação de valor e estrutura de mercado

O Polo conta com nove unidades de processamento de tilápia operantes e três em vias de instalação. Neste contexto, chama a atenção o fato de que a maioria destas unidades é de pequeno porte, apresentando uma capacidade de abate média de seis toneladas/dia/frigorífico (Figura 6.10a e 6.10b e Tabela 6.6).

![Figura 6.10a e 6.10b. Unidades de processamento de tilápia, Polo do Norte do PR.](image)
Tabela 6.6. Principais características das unidades de processamento de tilápia no Polo do Norte.

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidade média de abate das unidades de processamento da região</td>
<td>6 toneladas/dia (13.000 t/ano)</td>
</tr>
<tr>
<td>Volume médio de abate efetivo</td>
<td>2-4 toneladas/dia (sendo que nem todos estão em pleno funcionamento, resultando em 5.000 toneladas/ano)</td>
</tr>
<tr>
<td>Percentual de tilápia de terceiros ou integrados</td>
<td>80%</td>
</tr>
<tr>
<td>Raio médio de distância dos fornecedores</td>
<td>Até 100 km</td>
</tr>
<tr>
<td>Utilização de tanque de depuração</td>
<td>Sim</td>
</tr>
<tr>
<td>Número de médio de funcionários</td>
<td>10-30</td>
</tr>
<tr>
<td>Taxa de utilização da mão de obra</td>
<td>1 funcionário/130 kg de peixe processado/ dia</td>
</tr>
<tr>
<td>Salário médio dos funcionários</td>
<td>R$ 1.200 a 1.600/mês*</td>
</tr>
<tr>
<td>Percentual médio de mulheres</td>
<td>70%</td>
</tr>
</tbody>
</table>

*1 a dois salários mínimos federal + benefícios.

Além de pequenos, seis dos nove frigoríficos possuem produção própria, absorvendo apenas parte da produção local (variando de 15 a 50%), sendo, portanto, um gargalo deste Polo por ser um mercado certo e abertura de mão de obra local.

Um dos frigoríficos faz integração com os produtores localizados num raio de 120 km de suas instalações. Neste caso, a produção dos integrados representa 85% sendo o restante produzido pelo próprio frigorífico. A relação dos integrados comparativamente aos piscicultores não integrados com os frigoríficos é bastante diferente. No caso dos integrados foi observado contrato de exclusividade com o frigorífico, que tem prazo de 30, 60 e até 90 dias para pagar o produtor. Além disso, o pagamento ao produtor varia de acordo com de acordo com um cálculo baseado em quatro variáveis: peso, sobrevivência, rendimento de filé e conversão alimentar, não sendo um valor fixo por quilograma, como é para os produtores não integrados. A garantia de compra e o fornecimento de assistência técnica aos integrados garante uma fidelidade entre estes e o frigorífico.

É importante ressaltar o impacto socioeconômico positivo das unidades de processamento, haja vista que estes empreendimentos são muito demandantes de mão de obra, ainda que sejam de pequeno porte. Além disso, usam a mão de obra feminina e aumenta o potencial de acesso a mercado.

Chama a atenção a grande distância percorrida para coletar a tilápia a ser processada. Essa distância pode ser de até 350 km. Em termos comparativos, no oeste paranaense o raio de distância é de apenas 30 km. Isso demonstra que há uma menor concentração de produtores, comparado com a região oeste do Paraná.

Uma das principais características que distingue o Polo do norte paranaense dos demais polos do nordeste (Submédio São Francisco e Ceará) é o alto consumo de tilápia na forma de filé (Tabela 6.7). É possível que esse alto consumo se deva, entre outros fatores, a elevada renda per capita na região, o que permite aos consumidores pagar um preço mais alto pelo produto. Ainda, as seis unidades processadoras em atividade na região possuem serviço de inspeção sanitária municipal (SIM), restringindo a comercialização para o mercado local. As demais unidades em construção solicitam o SIF ou SISB e futuramente a região poderá então ampliar seu mercado de filês de tilápia.

Segundo os responsáveis das unidades de processamento entrevistados, existe uma tendência de aumento no volume de tilápia oriundo de terceiros em detrimento da produção própria dos frigoríficos (tanto em viveiros, quando em tanques-rede), mas a integração não tem sido uma experiência simples. A cultura de integração e associativismo não é forte na região, não favorecendo os agrupamentos produtivos.

6.3.5. Infraestrutura do Polo

O Polo de tilápicultura do Norte do Paraná apresenta uma das melhores infraestruturas do Brasil, contando com a presença de agentes dos diversos elos da cadeia produtiva como processamento de pescado, alevinagem e fábricas de ração (Figuras 6.11a e 6.11b).
A exemplo da região oeste, o norte paranaense conta com diversas estações de alevinagem bem distribuídas dentro do Polo (Figura 6.12).

Vale também ressaltar a importância da infraestrutura pública para o desenvolvimento da tilapicultura neste Polo. O norte do Paraná é uma das regiões mais ricas e desenvolvidas do Brasil e possui uma boa infraestrutura de estradas, aeroportos e energia elétrica.

6.3.6. Mercado

Tendo em vista produzirem volumes maiores de tilápias, os produtores em tanque-rede atendem canais de comercialização mais distantes como, por exemplo, a CEAGESP em São Paulo e o CEASA, no Rio de Janeiro. Os produtores em viveiro escavado, por sua vez, são mais focados em canais de venda regionais (Tabela 6.8).
Apesar da capacidade de processamento dos frigoríficos da região, hoje, eles absorvem ainda apenas 60% da tilápia produzida no Polo. Sem a garantia desse mercado, muitos piscicultores sentem dificuldade na hora da comercialização de sua produção, pois, apesar de existir um bom número de intermediários na região, a maioria dos piscicultores deste Polo ainda não é competitivo em volume e preço.

Tabela 6.8. Principais características do mercado de tilápia do Polo do Norte PR.

<table>
<thead>
<tr>
<th>Principais canais de comercialização</th>
<th>Principais formas de apresentação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque-redes, Intermediários, CEAGESP, CEASA-RJ e pesque-pague de SP</td>
<td>Viva e inteira no gelo</td>
</tr>
<tr>
<td>Viveiro escavado, Intermediários, pesque-pague da região e abatedouros integrados</td>
<td>Viva e inteira no gelo</td>
</tr>
</tbody>
</table>

Já o mercado para os frigoríficos que processam as tilápias deste Polo as pequenas redes do foodservice e mercados regionais são os principais canais de escoamento da produção. (Figura 6.13a, 6.13b e 6.13c).

Figuras 6.13a, 6.13b e 6.13c. Tilápia processada vendida juntamente com tempero pronto e outras embalagens encontradas no Polo do Norte PR.

6.4. Governança e estrutura da cadeia de valor da tilápia

6.4.1. Estrutura da cadeia de suprimentos

A presença de diversos fornecedores de alevinos é um ponto forte do Polo do norte do Paraná (Tabela 6.9). Dentre essas estações de alevinagem existem grandes empresas que atuam como importantes fornecedores, não apenas para o norte paranaense, mas também para a região oeste, assim como outros estados como São Paulo, Mato Grosso do Sul e Santa Catarina.

Tabela 6.9. Matriz de origem dos insumos e equipamentos utilizados no Polo do Norte do PR.

<table>
<thead>
<tr>
<th>Insumo/Equipment</th>
<th>Local de produção do insumo ou equipamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>Dentro e fora do Polo</td>
</tr>
<tr>
<td>Medicamentos</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Classificador de peixes (Não se usa no Polo Tabela 5)</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Software de gestão de produção (idem)</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Tanque-redes</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Gelo</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Alevinos</td>
<td>Dentro do Polo</td>
</tr>
</tbody>
</table>

Existem sete fábricas na região e pelo menos 10 diferentes empresas de ração disputando a piscicultura deste Polo. Maioria das fábricas está em SP. Alguns piscicultores produzem o próprio tanque-redes e outros compram de terceiros. A maioria dos tilápicultores está localizada a menos de 20 km da estação de alevinagem fornecedora.
Este Polo se beneficia de sua proximidade com o Estado de São Paulo no que se refere à cadeia de suprimentos, haja vista que o estado paulista possui um grande número de empresas fornecedoras e fabricantes de insumos e equipamentos para aquicultura (ex.: ração, softwares de gestão, tanque-rede).

Além disso, a região conta também com 12 unidades de processamento (Figura 6.14), apesar de nem todas estarem em atividade ou em pleno funcionamento. Isso é um diferencial deste Polo, sobretudo se comparado com aqueles da região nordeste do Brasil, o que permite um melhor acesso ao mercado, haja vista a obtenção de produtos processados (filé) e inspecionados.

6.4.2. Governança da cadeia de valor

A cadeia produtiva da tilápias do Polo do norte paranaense apresenta um canal de comercialização composto por diversos agentes. Existe uma diversidade de canais de venda e é comum que um mesmo piscicultor comercialize sua produção através de mais de um desses canais (Figura 6.15).

Figura 6.15. Canais de comercialização de tilápias no Polo do Norte do PR.

A venda diretamente para unidades de processamento (frigoríficos) é feita, principalmente por produtores trabalhando em sistema de integração vertical. Este Polo conta com alguns desses empreendimentos, porém atuando com um volume de produção e um número de produtores, ainda relativamente reduzido.

Apesar do Polo do Norte do Paraná não contar com uma atuação tão forte das cooperativas – como é o caso no oeste do estado – verifica-se a existência de outras formas de organização produtiva com relativa importância dentro da cadeia produtiva da tilápias, como demonstrado na Tabela 6.10.

Fonte: Adaptado de IBGE (2017).
O modelo de organização de piscicultores por condomínio de piscicultura é um instrumento legal de organização produtiva contemplado na legislação brasileira já há algumas décadas, porém só nos últimos anos esse modelo tem se desenvolvido na piscicultura, em especial nas tilapiiculturas dos Estados do Paraná, São Paulo e Mato Grosso.

Tabela 6.10. Organizações do Polo do Norte do Paraná.

<table>
<thead>
<tr>
<th>Nome</th>
<th>Tipo de Organização</th>
<th>Atuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condomínio Piscicultura Almeida</td>
<td>Condomínio rural</td>
<td>Terminação de tilápia</td>
</tr>
<tr>
<td>Cooperativa Integrada</td>
<td>Cooperativa</td>
<td>Venda de ração de tilápia para cooperados e clientes externos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assistência Técnica</td>
</tr>
<tr>
<td>Cooperativa Cocamar</td>
<td>Cooperativa</td>
<td>Venda de ração de tilápia para cooperados e clientes externos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assistência Técnica</td>
</tr>
<tr>
<td>Cooperativa Cocari</td>
<td>Cooperativa</td>
<td>Venda de ração de tilápia para cooperados e clientes externos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assistência Técnica</td>
</tr>
<tr>
<td>Associação de ITAMBARACÁ</td>
<td>Associação de Piscicultores</td>
<td>Representação setorial</td>
</tr>
<tr>
<td>Associação de Santo Antônio da Platina</td>
<td>Associação de Piscicultores</td>
<td>Representação setorial</td>
</tr>
<tr>
<td>ANPAQUI (Associação Norte Paranaense de Aquicultores)</td>
<td>Associação de Piscicultores</td>
<td>Representação setorial</td>
</tr>
<tr>
<td>APISNORE</td>
<td>Associação de Piscicultores</td>
<td>Representação setorial</td>
</tr>
<tr>
<td>Smartfish</td>
<td>Integrador</td>
<td>Integração vertical da produção</td>
</tr>
<tr>
<td>APISNORE</td>
<td>Associação de Piscicultores</td>
<td>Representação setorial</td>
</tr>
<tr>
<td>Smartfish</td>
<td>Integrador</td>
<td>Integração vertical da produção</td>
</tr>
</tbody>
</table>

6.4.3. Análise competitiva do Polo do norte do Paraná

A análise das cinco forças de Michael Porter constitui uma ferramenta para o estudo competitivo de uma determinada indústria. No presente caso, o foco da análise é o segmento de engorda e seus principais atores – os piscicultores.

O primeiro aspecto analisado concerne às barreiras à entrada de novos produtores na indústria. No caso do Polo do norte do Paraná, e para a indústria da tilápia de modo geral, essas barreiras são baixas devido ao fácil acesso ao pacote tecnológico da tilápia e também ao fato de não haver uma necessidade imperativa de grandes escalas de produção para acessar o mercado – ainda que maiores produções possam determinar uma maior competitividade para os produtores.

Por outro lado, no que se refere à ameaça de produtos substitutos, verifica-se uma elevada competição entre eles, principalmente com os filés de pescados importados. Esses produtos podem ser oriundos da aquicultura, como o pangasius, ou da pesca como a polaca do Alaska ou merluza.

Os piscicultores apresentam um menor poder de negociação junto a seus compradores devido ao grande número dos frigoríficos. No entanto, apesar de haver um número considerável de unidades de processamento na região, comparado com outros polos, percebe-se que estas unidades possuem um peso econômico bem maior que o dos piscicultores no valor final do produto, uma vez que elas agregam grandes volumes de tilápia e, portanto, trabalham com um maior nível de escala de produção e consequentemente de capital.

Quanto ao poder de negociação dos fornecedores de insumos, verifica-se uma relação de poder mais simétrica, tendo em vista o grande número de empresas fabricantes e fornecedoras na região. No entanto, vale ressaltar que o grande porte de algumas fábricas de ração pode comprometer o poder de negociação de pequenos produtores.

Finalmente, percebe-se que o grau de rivalidade entre os piscicultores é médio tendo em vista que, apesar da proximidade geográfica com o mercado do estado São Paulo, há uma forte competição por preço junto aos produtores de tilápia da região do oeste paranaense, que apresentam menores preços médios (Figura 6.16).
Diagnóstico da cadeia de valor da tilapicultura no Brasil

Ameaça de novos entrantes (Barreiras à entrada)	• Baixa barreira à entrada de novos produtores devido à: (a) facilidade de acesso às tecnologias de produção; (b) pequena escala de produção
Ameaça de produtos substitutos	• Elevada competição com produtos substitutos, principalmente filé de pescado importado
Poder de negociação dos clientes	• Alto, devido a grande escala dos integradores, intermediários e unidades de processamento privadas
Poder de negociação dos fornecedores	• Médio, devido a grande quantidade de fornecedores e fabricantes de insumos e equipamentos na região.
Grau de rivalidade entre os concorrentes	• Baixo, pois apesar do grande número de piscicultores há uma demanda crescente por tilápia no mercado nacional

Figura 6.16. Análise competitiva do Polo de tilapicultura do Norte do Paraná a partir do modelo de cinco forças de Porter.

6.4.4. Distribuição do valor agregado

A análise da divisão do valor agregado ao longo da cadeia produtiva permite o entendimento sobre como cada um dos agentes se apropria do capital acumulado desde a produção até a venda do bem ao consumidor final.

Na Figura 6.17 é possível verificar que no caso do filé de tilápia, os supermercados são responsáveis por agregar 40% do valor final do produto vendido ao consumidor. Os processadores e os produtores agregam respectivamente 19 e 7% ao valor final.

Uma análise superficial pode levar a crer que supermercados ganham muito em comparação aos demais. No entanto, é importante ressaltar que esse tipo de varejo trabalha com margens brutas reduzidas devido aos elevados custos de comercialização e logística, que não foram considerados no cálculo acima.

Figura 6.17. Divisão do valor agregado na cadeia produtiva da tilápia no Norte do Paraná, filé. Fonte: Flores et al. (2016) e elaboração própria. Valores de produtor em equivalente-peixe inteiro (3 kg de peixe/1 kg de filé).

6.5. Arcabouço legal e regulatório

6.5.1. Regulação ambiental e cessão das águas públicas da união

Segundo os piscicultores entrevistados, o processo de licenciamento ambiental dos projetos tem levado de 1 a 2 anos para serem concluídos. No caso dos processos de cessão de área aquícola esse prazo varia entre 2 e 4 anos. A Tabela 6.11 apresenta os aspectos gerais do processo regulatório deste Polo.

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Tempo médio para finalização do processo</th>
<th>Órgão responsável</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licenciamento ambiental</td>
<td>1-2 anos</td>
<td>IAP</td>
</tr>
<tr>
<td>Cessão de área aquícola</td>
<td>>4 anos</td>
<td>MAPA</td>
</tr>
</tbody>
</table>

6.5.2. Políticas públicas de fomento e extensão

O Polo do Norte do Paraná conta com diversas instituições atuantes em políticas públicas para a cadeia produtiva. Merece destaque a atuação da EMATER por meio de ações de assistência técnica e extensão rural e também os trabalhos da Universidade Estadual de Maringá (UEM) no âmbito de melhoramento genético de tilápia (Tabela 6.12).

Tabela 6.12. Principais instituições atuantes no Polo de tilapia do Norte do PR.

<table>
<thead>
<tr>
<th>Instituição</th>
<th>Principais áreas de atuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>SICREDI e BB</td>
<td>Financiamento de custeio e investimento</td>
</tr>
<tr>
<td>Ministério da Agricultura (MAPA)</td>
<td>Ordenamento das áreas aquícolas em águas da união</td>
</tr>
<tr>
<td>UEM (Universidade Estadual de Maringá)</td>
<td>Pesquisa e extensão; laboratórios para anályses de água e sanitária</td>
</tr>
<tr>
<td>UEL (Universidade Estadual de Londrina)</td>
<td></td>
</tr>
<tr>
<td>UENP (Universidade Estadual do Norte Paranaense)</td>
<td></td>
</tr>
<tr>
<td>PLANAPEC*</td>
<td>Extensão e consultoria setorial</td>
</tr>
<tr>
<td>SENAR?</td>
<td>Treinamentos</td>
</tr>
<tr>
<td>Secretaria de Agricultura do Paraná</td>
<td></td>
</tr>
<tr>
<td>EMATER</td>
<td>Extensão e assistência técnica</td>
</tr>
<tr>
<td>ADAPAR**</td>
<td>Controle Sanitário</td>
</tr>
<tr>
<td>DERAL***</td>
<td>Estatística de Produção</td>
</tr>
</tbody>
</table>

*PLANAPAEC = Empresa privada de consultoria no setor; **ADAPAR = Agência de Defesa Sanitária do Paraná; ***DERAL = Departamento de Economia Rural da Secretaria de Agricultura do Paraná.

A EMATER-PR tem uma forte atuação na cadeia produtiva tilápia da região. Apesar da necessidade renovação e ampliação do seu quadro técnico, a EMATER tem feito um importante trabalho de assistência por meio de seus técnicos especializados em piscicultura (Figuras 6.18 a e 6.18b).

Figura 6.18 a e 6.18b – Atuação da EMATER-PR no Polo do Norte do PR.

Vale ressaltar também que a EMATER tem atuado diretamente na promoção de evento técnicos, tais como o Seminário Estadual de Aquicultura do Paraná que ocorre simultaneamente com a EXPOLONDRA (Figura 6.19).

Outra ação importante a ser citada, é o Projeto Estratégico do Governo do Paraná. O foco deste projeto é: propiciar alternativas para o aumento de renda e melhoria da qualidade de vida dos piscicultores e suas famílias através do trabalho de extensão, da organização e da assistência técnica na implementação de atividades sustentáveis.
Principais ações:

1. Licenciamento ambiental das instalações
2. Profissionalização dos piscicultores
 - Definição dos sistemas de produção
 - Adequação das instalações de cultivo
 - Gestão técnica e econômica da atividade
 - Monitoramento e manejado da qualidade da água
 - Manejo da produção
 - Manejo sanitário
 - Processamento e comercialização
 - Comercialização/mercado
3. Organização dos piscicultores
 - Condomínios
 - Associações
 - Cooperativas

Através do trabalho, com o uso das metodologias da extensão rural, são difundidas as tecnologias para a redução no ciclo de cultivo e na mortalidade, na melhoria da taxa de conversão alimentar aparente e no rendimento de filé, com consequente aumento da produtividade e da renda. As ações no monitoramento e manejado da qualidade da água e no manejo correto da produção se refletem na sustentabilidade ambiental da atividade.

O trabalho, sob a coordenação da Secretaria da Agricultura e do Abastecimento, está sendo conduzido pelos técnicos da Emater que atuam em parcerias com técnicos das Secretarias Municipais de Agricultura, de empresas de planejamento agropecuário e de empresas privadas ligadas do setor aquícola, principalmente do fornecimento de equipamentos e insumos.

A Emater possui quatro técnicos atuando em piscicultura no Polo, sendo 2 técnicos de nível superior com dedicação prioritária para a atividade e abrangência regional e 2 técnicos de nível médio que atendem a demandas, contribuem na organização das ações e possuem abrangência municipal.

6.6. Principais gargalos do Polo

A concorrência com a produção oriunda da região oeste do Paraná é um dos principais gargalos apresentados pelos produtores e demais agentes do Polo do norte paranaense. De fato, essa concorrência é resultado de uma maior competitividade do Polo Oeste paranaense, possivelmente devido à natureza do sistema de produção (viveiro escavado) e também da governança do setor que é mais verticalizada e coordenada, sobretudo com relação à atuação das cooperativas.

Outro gargalo importante apontado por grande parte dos entrevistados se refere à demora no processo de obtenção de licenciamento ambiental e cessão de uso das áreas aquícolas em águas da União. Estes dois processos envolvendo diversas instituições e, em especial à cessão, que tem sido gargalo também em outros polos de produção de tilápia.

No entanto, tratando especificamente do licenciamento ambiental, chama a atenção o fato de que no Polo do Oeste do Paraná o processo é ágil, demorando apenas cerca de 3 meses para ser finalizado. A Tabela 6.13 resume os principais gargalos encontrados neste Polo.

O alto custo com ração e a dificuldade de acesso ao crédito bancário para financiamento do custeio e investimento foram outros gargalos levantados. Esses dois pontos estão diretamente relacionados às questões de organização da cadeia e demora na regularização ambiental – que constitui um condicionante para acessar os financiamentos.
Por fim, diversos agentes também relataram a falta de informações sobre o mercado como um importante gargalo. Segundo eles, a falta de informações sistematizadas dificulta a definição de estratégias de venda, haja vista que os produtores disseram ter dificuldade de obter dados confiáveis sobre preços, novos mercados e tendências da demanda em termos de padrões de qualidade e novos produtos.

Tabela 6.13. Principais gargalos do Polo do norte do Paraná

<table>
<thead>
<tr>
<th>Gargalo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercialização</td>
<td>- Necessidade de trabalhar a competitividade do piscicultor através do aumento da eficiência produtiva</td>
</tr>
<tr>
<td></td>
<td>- Necessidade de desenvolver/melhorar mercados regionais</td>
</tr>
<tr>
<td>Demora no processo de</td>
<td>Processo burocrático</td>
</tr>
<tr>
<td>regularização das áreas aquícolas e</td>
<td></td>
</tr>
<tr>
<td>licenciamento ambiental</td>
<td></td>
</tr>
<tr>
<td>Baixo nível tecnológico</td>
<td>- Impacto sobre a eficiência produtiva e a competitividade do piscicultor desse Polo</td>
</tr>
<tr>
<td>Alto custo de ração</td>
<td>- Impacto direto sobre margens de lucro</td>
</tr>
<tr>
<td>Dificuldade de acesso ao crédito</td>
<td>- Falta de regularização das pisciculturas</td>
</tr>
<tr>
<td></td>
<td>- Exigências elevadas em termos de garantia</td>
</tr>
<tr>
<td>Ausência de estudos de mercado</td>
<td>- Pouca informação sobre mercado consumidor</td>
</tr>
<tr>
<td></td>
<td>- Pesquisas para melhoria de acesso a novos canais de comercialização</td>
</tr>
</tbody>
</table>

6.7. Perspectivas futuras do Polo de tilápicultura do Norte do Paraná

Verificou-se uma perspectiva geral positiva por parte dos agentes da cadeia produtiva, em especial devido à demanda crescente do mercado. Segundo os agentes, a consolidação do filé de tilápia como um produto de consumo regular pelas famílias vai continuar a impulsionar as vendas desse produto (Tabela 6.14). Além disso, a abertura do mercado para agregação de valor da tilápia (cortes, pratos semi-prontos, óleos, farinhas etc.) e consolidação da presença da tilápia nos supermercados garantirá o crescimento da cadeia produtiva.

No entanto, o aumento da demanda não implicará necessariamente em maiores margens de lucro, haja vista que também existe um aumento na produção, em especial aquela oriunda da região oeste do Paraná que, como já citado, pratica preços mais competitivos. De fato, segundo os agentes da cadeia produtiva, nos últimos cinco anos verificou-se um achatamento das margens devido à forte competição por preços com os produtores do Oeste paranaense.

<table>
<thead>
<tr>
<th>Tendência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento da oferta de tilápia</td>
<td>O aumento da oferta oriunda de aumento da produção</td>
</tr>
<tr>
<td>Aumento do consumo</td>
<td>Pelo aumento de oferta e popularização do produto</td>
</tr>
<tr>
<td>Diversificação de produtos</td>
<td>Desenvolvimento de produtos para adequação da demanda de mercado</td>
</tr>
</tbody>
</table>
7. Diagnóstico do Polo de Tilapicultura do Paraná - Oeste
7.1. Aspectos gerais

7.1.1. Aspectos geográficos e climáticos do Polo

O Polo de tilapicultura do Oeste paranaense é o maior do estado, respondendo por 69% da produção estadual de tilápias, de acordo com dados da Emater-PR. O Polo da região Oeste é formado por 48 municípios divididos em duas microrregiões administrativas: Cascavel e Toledo, que juntas abrangem um total de 56 municípios (Figura 7.1).

Segundo estimativas da Emater-PR, o Polo produz atualmente cerca de 56.000 toneladas de tilápias, majoritariamente em sistemas de viveiros escavados (Figuras 7.2a e 7.2b).

Os principais municípios produtores são: Assis Chateaubriand, Maripá, Toledo, Palotina e Nova Santa Rosa, produzindo juntos um total de 26.110 toneladas anuais de tilápias, segundo a Emater-PR.

A estrutura fundiária das propriedades desta região foi dividida, inicialmente, em áreas que tinham obrigatoriamente acesso à água. E pela riqueza e abundância dos recursos hídricos da região, bem como do relevo plano a levemente ondulado e com latossolo roxo profundo, permitiu a construção de viveiros para piscicultura.

Figura 7.1. Polo de tilapicultura do Oeste do Paraná e as duas microrregiões administrativas as quais pertence.
Fonte: Adaptado de IBGE (2017).
O Rio Paraná nasce na confluência de dois importantes rios brasileiros: o rio Grande e rio Paranaíba, entre os estados de Minas Gerais, São Paulo e Mato Grosso do Sul. A altitude máxima em suas nascentes é de 1.100 metros acima do nível do mar, chegando à cota de 220,3 no reservatório de Itaipu. Importante citar que o lago de Itaipú desempenha importante papel para a pesca regional e possui grande potencial para aquicultura, a qual é uma tendência para curto-médio prazo, uma vez que a produção de tilápia em seus braços (apenas nos braços, até o momento) foi autorizada em 2015.

O Rio Paraná foi represado entre 1975 e 1982 com a construção da Usina Hidrelétrica de Itaipú Binacional, um consórcio onde a Eletrobras, pelo Brasil, possui 50% e a Administração Nacional de Eletricidade (ANDE), pelo Paraguai, os outros 50%. Segundo dados da Itaipú Binacional, o Reservatório de Itaipú está localizado na fronteira do Paraguai com o Brasil, possui extensão de 170 km, área de 1.350 km² (em seu nível máximo normal) e volume máximo de 29 bilhões de m³. A vazão máxima do Rio Paraná é de 16.000 m³.

O Rio Iguaçu, por sua vez, nasce na serra do Mar, no Planalto de Curitiba, até a serra Geral no planalto de Ponta Grossa, cujo uso de suas águas são voltados principalmente para a extração de areia para a construção civil. Ao passar por Curitiba, o rio Iguaçu recebe esgoto doméstico, contaminando-se com dejetos de ferro, mercúrio manganês, bem como com materiais sólidos em suspensão. Outro evento de contaminação do Rio Iguaçu ocorreu no ano 2000, quando a Petrobrás ocasionou um acidente com derramamento de cerca de 4 milhões de litros de óleo no rio Iguaçu, causando danos na flora e fauna e comprometendo o abastecimento de água em várias cidades da região. A vazão média anual do Rio Iguaçu, na área das cataratas do Iguaçu é de 1.413,50 m³/s, porém, apresenta no mês de maior caudal, em outubro, um volume d’água em torno de 2.506 m³/s e no mês de menor caudal, em abril, o volume d’água fica entorno de 1.326 m³/s.
Outro ponto natural favorável à aptidão aquícola deste Polo é a existência de solos com elevado percentual de argila, ideal para construção de viveiros escavados. Segundo a Embrapa (SISTEMA... 1999) na região oeste do Paraná existe o predomínio dos latossolos vermelhos e nitossolos vermelhos, férricos. As Figuras 7.4 e 7.5 ilustram, respectivamente, o mapeamento de solos e de declividade da região.

Outro fator favorável da região do Oeste paranaense é o relevo que se mostra plano a suavemente ondulado (declividade de 0 a 2%), sendo a declividade de 2% ideal para a construção de viveiros.

Por outro lado, a produção da aquicultura sofre com o inverno, quando, ocasionalmente, as temperaturas mínimas na água chegam a 10-12°C em algumas madrugadas, causando mortalidades elevadas de peixes em alguns anos.

Devido a temperaturas mais baixas, o período de reprodução também e afetado e a disponibilidade de alevinos inicia-se para o povoamento dos viveiros a partir de outubro. Por isso, a introdução no sistema de produção com juvenis foi fundamental para que a disponibilidade de tilápias para o abate não tivesse interrupções durante o ano.

![Figura 7.4. Tipos de Solos do Polo Oeste de Tilapicultura do Paraná. Fonte: Adaptado de IBGE (2017) e ITCG (2008).](image1)

![Figura 7.5. Declividade do Polo Oeste de Tilapicultura do Paraná. Fonte: Adaptado de IBGE (2017) e IPANDES (1995).](image2)

De modo geral, a região de Toledo é a que apresenta menores altitudes e clima predominantemente temperado úmido com verão quente, segundo a classificação de Köppen (KÖPPEN, 1948), condições que tendem a manter a temperatura mais elevada. Já a região de Cascavel apresenta maiores altitudes (atingindo até 800 metros) e onde o clima predominante é temperado com verão mais ameno.
Os mapas de hipsometria e climático em escalas de 1:250.000 são ilustrados nas Figuras 7.6 e 7.7.

Figura 7.6. Altitude do Polo Oeste de Tilapicultura do Paraná.

Os principais municípios produtores de tilápia são: Assis Chateaubriand, Maripá, Toledo, Palotina e Nova Santa Rosa, produzindo juntos um total de 26.110 toneladas anuais, segundo a Emater-PR.

Essa região possui uma forte tradição cooperativista, verificando-se a presença de grandes cooperativas agropecuárias como a Coamo, C-Vale, Coopavel, LAR, Coopacol, Coopagrile e Primato. No entanto, a participação das cooperativas é recente, mas bastante expressiva, uma vez que a Copacol é uma das maiores produtores de filé de tilápia do Brasil. As cooperativas diretamente envolvidas na tilapicultura são: Coopacol e C-Vale. A LAR está em fase experimental na atividade de processamento e as cooperativas Primato, Coopagrile e Copavel produzem e vendem ração para a tilápia com alguma assistência técnica aos produtores.

Figura 7.7. Climas do Polo Oeste de Tilapicultura do Paraná segundo a classificação de Köppen.

Há ainda a Copiscses, única cooperativa voltada exclusivamente para a atividade piscicultora, com 55 cooperados, não integrados, mas com assistência técnica e garantia de comercialização e processamento de seus peixes de forma coletiva. Entretanto, essa cooperativa encontra dificuldades de fidelização dos cooperados, que não são obrigados a vender toda a produção à cooperativa.

Não há como negar que as cooperativas têm favorecido o desenvolvimento da tilapicultura na região, seja pela oferta de insumos (ração), seja pela atuação direta delas na cadeia produtiva da tilápia e o uso da estrutura e logística já existente para outros produtos de origem animal.
A Copacol, que atualmente abate 70 mil tilápias/dia em sua unidade de Nova Aurora, PR, está investindo R$ 80 milhões na expansão de seu projeto de integração, onde o produtor recebe os juvenis, ração e assistência técnica da cooperativa, que organiza e estrutura a logística produtiva dos cooperados, recebendo e processando os peixes produzidos. O investimento desta grande cooperativa elevará seu potencial de abate para 140 mil tilápias/dia até 2018. Atualmente, a Coopacol possui 170 cooperados integrados na produção de tilápias. Além da unidade de processamento, o projeto da Coopacol também inclui uma estação de alevinagem com um projeto de melhoramento genético de matrizes de tilápias, em fase final de instalação (Figuras 7.8a, 7.8b e 7.8c).

A cooperativa C-Vale inicia na tilapicultura com investimentos de R$ 80 milhões em uma unidade de processamento de tilápia, cuja construção está sendo feita em uma área que já abriga sua planta de processamento avícola, no município de Palotina, PR, também utilizando o sistema de integração.

Dentre as principais condições favoráveis ao desenvolvimento da tilapicultura no Polo do Oeste do Paraná, destacam-se:

- Existência de infraestrutura das cooperativas agropecuárias;
- Boa infraestrutura de transporte;
- Recursos hídricos disponíveis;
- Formação técnica, ensino e pesquisa das universidades regionais;
- Amplia infraestrutura de processamento.
- Produção e disponibilidade de alevinos.

7.2. Fatos históricos relevantes para o desenvolvimento do Polo

A região oeste foi uma das portas de entrada da tilápia no estado do Paraná quando, no ano de 1979, o Instituto Ambiental do Paraná, por meio do centro de Pesquisa em Animais Aquáticos (CPAA) localizado no município de Toledo, introduziu os primeiros exemplares de tilápia oriundas da Universidade Federal Rural de Pernambuco (BARROSO et al., 2015).

Ainda, na década de 80 a região oeste paranaense, mais exatamente no município de Assis Chateaubriand, região de Toledo, passou a contar com o primeiro frigorífico para o processamento industrial exclusivo da tilápia no Brasil (BARROSO et al., 2015).

A Figura 7.9 ilustra a linha do tempo do Polo de tilapicultura do oeste do Paraná.

7.3. Caracterização da tilapicultura

7.3.1. Perfil dos produtores

O número de propriedades com piscicultura é relativamente grande na região, em torno de 2.000 propriedades, mas calcula-se que apenas a metade explora a atividade comercialmente, segundo a Emater-PR.

No geral, o volume por unidade produtiva é baixo devido ao baixo nível de conhecimento técnico da atividade, mas essa é pela maioria desses produtores. Dessa forma, há uma falta de ajustes das estruturas produtivas para sistemas mais modernos de produção, sendo mais comum o baixo uso de recursos e baixa adoção tecnológica, tornando grande parte das produções pouco eficiente.

No entanto, há um grande número de produtores no Polo somando um volume expressivo de tilápia ofertada pelo Polo. A produção é composta, principalmente por piscicultores familiares, ocorrendo uma minoria de produtores com perfil empresarial. Ambos operam em sistema de viveiro escavado.

Com uma experiência em média de 10 a 20 anos e após muitos treinamentos liderados principalmente pela Emater e Senar, parte dos produtores deste Polo acumularam conhecimento sobre a atividade, mas ainda há uma heterogeneidade neste sentido, com áreas menos provis de assistência técnica e, consequentemente, com implicações quanto ao uso tecnológico. Dessa forma, a classificação dos piscicultores pelo espehlo d’água é: pequenos (até 0,5 ha), médios (0,5 a 2,0 ha) e grandes (acima de 2,0 ha), levando-se em consideração, principalmente a área alagada de viveiros, já que o sistema de produção intensivo é praticado em todos os níveis (Tabela 7.1). Os produtores que se desenvolveram tecnicamente e formaram um canal de comercialização melhor definido, possuem na tilapicultura uma atividade econômica mais significativa (com relação à renda da propriedade) e produzem volumes que atendem a demanda da indústria. O mesmo não aconteceu com os produtores que iniciaram e mantêm uma estrutura de viveiros nas propriedades sem ou de pouco volume comercial (subsistência).

A mão de obra é familiar em mais de 90% das propriedades, embora tenham crescido os investimentos em áreas maiores e que podem ser classificados como grandes, onde há mão de obra contratada. A mão de obra normalmente

Figura 7.9. Linha do tempo do Polo de tilapicultura do oeste do Paraná.
não é limitante para o desenvolvimento da atividade na propriedade, mas sim as condições de disponibilidade de água e área, recursos financeiros, impedimentos ambientais.

Tabela 7.1. Principais características dos tilapiicultores do Oeste do Paraná.

<table>
<thead>
<tr>
<th>Sistema de produção</th>
<th>Porte</th>
<th>Tempo médio de experiência na produção de tilápia</th>
<th>Tamanho médio da piscicultura</th>
<th>Volume médio de produção (t/ano)</th>
<th>Mão de obra familiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viveiro escavado</td>
<td>Pequeno</td>
<td><0,5 ha</td>
<td>20</td>
<td>Sim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>0,5 a 2 ha</td>
<td>35</td>
<td>Sim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grande</td>
<td>>2 ha</td>
<td>80</td>
<td>Não</td>
<td></td>
</tr>
</tbody>
</table>

A utilização da mão de obra familiar é uma das principais características deste Polo. De fato, isso representa uma característica geral da região no qual a produção agrícola tem um caráter fortemente familiar. Uma tendência dos últimos anos é a formação técnica dos membros mais jovens em áreas afins à atividade e que retornam às famílias para ajudar no crescimento e melhoramento das práticas agropecuárias, incluindo a piscicultura. A Figura 7.10 apresenta uma das propriedades familiares produtoras de tilápia entrevistadas.

Figura 7.10. Propriedade familiar produtora de tilápia, Oeste do Paraná.

7.3.2. Características produtivas

A maioria dos piscicultores do Polo, principalmente em Maripá, faz parte de alguma cooperativa, sendo algumas dessas diretamente envolvidas na produção e processamento de tilápia. Algumas cooperativas não atuam na produção ou processamento de tilápia, mas a maioria já participa da atividade por meio da venda de insumos (ex.: ração) e/ou financiamento do custeio, e assistência técnica.

Entretanto, essa é uma característica, ainda a ser desenvolvida no restante do Polo. As associações serviram para organizar, inicialmente o setor, mas observa-se também neste Polo a limitação da consciência associativa pelos produtores que têm dificuldade de trabalharem de forma participativa.

A Tabela 7.2 apresenta as principais características produtivas dos tilapiicultores do Oeste do Paraná.

Tabela 7.2. Principais características produtivas dos tilapiicultores do oeste do Paraná.

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilização de financiamento bancário</td>
<td>Sim. Principamente PRONAF através do BB e SICREDI</td>
</tr>
<tr>
<td>Status da área em terra</td>
<td>Própria</td>
</tr>
<tr>
<td>Assistência técnica</td>
<td>Sim. Atuação importante da EMATER-PR. Mas, as cooperativas, prefeiuritas, distribuidores de ração e outras iniciativas privadas, também colaboram na assistência técnica.</td>
</tr>
<tr>
<td>Produção exclusiva de tilápia</td>
<td>95% das pisciculturas produzem exclusivamente tilápia.</td>
</tr>
<tr>
<td>Participação em organização produtiva</td>
<td>Participação em organizações, sobretudo cooperativas. Mas o associativismo precisa ser trabalhado para otorizar a ocorrência de associações produtivas efetivas.</td>
</tr>
<tr>
<td>Estruturas de acesso</td>
<td>Os acessos às pisciculturas são de boa qualidade, sendo a maioria pavimentada.</td>
</tr>
</tbody>
</table>

Um detalhe importante que favorece a solicitação de crédito, tanto de custeio quanto para compra de equipamentos, é a inexigibilidade do licenciamento ambiental. Segundo o Sicredi, a classificação dos credores e as condições de empréstimo são dadas da seguinte forma: Pequeno = renda de 300 mil reais por ano (juros de 3,5 a 5% ao ano); Médio = renda de 1,6 milhões / ano (juros de 6,75% ao ano) Grande = acima de 1,6 milhão ao ano (juros de 8% /ano). As garantias reais dependem de cada caso. A fiscalização dos empréstimos é feita a risco, já que a financiadora é responsável e fiadora do empréstimo. Dessa forma, há a exigência de se apresentar notas fiscais das compras e também através de visitas nas propriedades.

Os dados do Pronaf gerenciados pelas agências do Banco do Brasil, também demonstram um grande crescimento das solicitações, principalmente para custeio de aquisição de ração (Figura 7.11). Tais créditos incentivam os cultivos intensivos de produção de tilápias, havendo um acréscimo de solicitação deste recurso em torno de 1000% desde 2009. Os financiamentos para investimento não foram igualmente elevados, embora tenha ocorrido um acréscimo em torno de 100% no período. A operação dessas linhas de crédito com valores bastante significativos favoreceram imensamente o crescimento da cadeia de produção de tilápias na região.

Figura 7.11. Uso de recursos financeiros (R$) para atividades agrícolas nas regiões de Toledo e Cascavel através de projetos de custeio e investimento com recursos do Pronaf gerenciados pelas agências do Banco do Brasil S.A. dos anos agrícolas de 2009 a 2016. Fonte: Dados obtidos pelos autores junto a Emater-PR.

7.3.3. Caracterização tecnológica

A utilização de aeradores é uma prática comum entre os tilicultores dessa região e permite ganhos de produtividade oriundos da maior densidade de estocagem, a qual em média se situa entre 4 a 8 peixes/m². Considerando o peso médio de abate de 700g, tem-se então uma densidade final média de 2,8 a 5,6 kg/m². A Tabela a seguir apresenta as principais características dos tilicultores do oeste do Paraná. A Tabela 7.3 resume as principais características das tiliculturas deste Polo.

A Tabela 7.4 apresenta uma síntese das principais tecnologias utilizadas no Polo. A tecnologia mais observada é o uso de aeradores. Nas propriedades maiores sua-se também alimentação mecanizada e silos para armazenamento de ração, havendo uma variação do grau de automação entre os piscicultores do Polo. Detalhe importante é que a compra da ração à granel com armazenamento em silos barateia o custo da ração.

³⁶ Sicredi = cooperativa de crédito.
Tabela 7.3. Principais características das tilapiiculturas do Oeste do Paraná.

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Viveiro escavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principais tipos de estrutura de cultivo</td>
<td></td>
</tr>
<tr>
<td>- Unidades produtivas (viveiros) de 0,1 a 0,5 ha;</td>
<td></td>
</tr>
<tr>
<td>- Totalizando de 1 a 1,5 ha de lâmina d’água em cada propriedade.</td>
<td></td>
</tr>
<tr>
<td>Principais gargalos ambientais</td>
<td></td>
</tr>
<tr>
<td>- Baixa temperatura da água nos meses mais frios (inverno de 3-4 meses);</td>
<td></td>
</tr>
<tr>
<td>- Efluentes dos cultivos.</td>
<td></td>
</tr>
<tr>
<td>Sazonalidade ao longo do ano</td>
<td>Sim</td>
</tr>
<tr>
<td>Duração do ciclo (juvenil de 30g até 700 g)</td>
<td>>250 dias.</td>
</tr>
<tr>
<td>Densidade final (Kg peso vivo/m2)</td>
<td>2,8 a 5,6 kg/m2 (média de 40 t/ha)</td>
</tr>
<tr>
<td>Uso de vacina</td>
<td>Não</td>
</tr>
<tr>
<td>Uso de outros produtos veterinários</td>
<td>Mais comum para alevinos</td>
</tr>
<tr>
<td>Taxa de conversão alimentar média</td>
<td>1,4</td>
</tr>
<tr>
<td>Policultivo</td>
<td>Não é significativo</td>
</tr>
</tbody>
</table>

Tabela 7.4. Principais tecnologias utilizadas/tendências na produção de tilápia no Polo do Oeste do Paraná.

<table>
<thead>
<tr>
<th>Tecnologias</th>
<th>Utilização comum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Despesca mecanizada</td>
<td>Pouco utilizado</td>
</tr>
<tr>
<td>Silos para ração a granel</td>
<td>Tendência</td>
</tr>
<tr>
<td>Aerador</td>
<td>Sim</td>
</tr>
<tr>
<td>Alimentador mecanizado</td>
<td>Pouco utilizado</td>
</tr>
<tr>
<td>Classificação automática</td>
<td>Não</td>
</tr>
<tr>
<td>Kit de análise de água</td>
<td>Só possuem os que têm assistência técnica</td>
</tr>
<tr>
<td>Biometria</td>
<td>Só realizam os que têm assistência técnica</td>
</tr>
<tr>
<td>Oxímetro</td>
<td>Menos de 5%</td>
</tr>
</tbody>
</table>

Segundo os produtores, esses silos permitem uma economia na aquisição de ração, pois o preço pago é menor devido a não utilização de sacaria pelo fabricante e também pela logística mais simples. Os silos são normalmente localizados próximos aos viveiros a fim de facilitar a distribuição de ração.

Estima-se que em torno de 30% dos produtores deste Polo sigam uma rotina de biometria e análise da qualidade da água, basicamente os cooperados ou que possuem assistência técnica rotineira.

Uma tecnologia que é tendência na região são os silos para armazenagem de ração a granel (Figura 7.12). No momento, é mais comumente observado em produtores maiores e entre os integrados de algumas cooperativas.

Figura 7.12. Silo para armazenamento de ração para produção de tilápia, Oeste do PR.

7.3.4. Processamento e estrutura de mercado

A produção de tilápia do Polo oeste paranaense é fortemente voltada para o mercado de filé. Deste modo, a região conta com 22 unidades de processamento de tilápia, sendo 18 unidades de médio e pequeno porte, com capacidade de abate de 1 a 10 toneladas/dia, quatro unidades consideradas de grande porte, com processamento variando de 20 a 90 toneladas/dia. De uma maneira geral as pequenas unidades de processamento são privadas enquanto os grandes frigoríficos são de propriedade das cooperativas (Figuras 7.13a, 7.13b, 7.14a e 7.14b).
Verifica-se uma concentração, em termos de proximidade, de produtores e unidades de processamento de tilápia dentro deste Polo (no município de Toledo, PR), o que resulta em distâncias relativamente curtas para buscar o peixe, sendo o raio médio de até 30 km (Figura 7.15).

Recentemente, devido, entre outros, à valorização do dólar frente ao real, algumas unidades de processamento de grande porte tem investido na exportação de filé de tilápia para os Estados Unidos.

Um detalhe importante se refere ao grande efetivo de mulheres que trabalham nas unidades de processamento, chegando em alguns casos à 80% do total de empregados da indústria (Tabela 7.5).

Tabela 7.5. Principais características das unidades de processamento de tilápia no Polo do Oeste do Paraná.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
</table>
| Capacidade média de abate das unidades de processamento da região | Pequeno porte 1-4 toneladas/dia
| Rendimento médio de filé no processamento (em % do peso total do peixe) | Médio e grande porte 20-50 toneladas/dia 34-35% |
| Percentual de tilápia de terceiros | Indústrias privadas 70 a 80%
| Cooperativas | 2,5 a 5% |
| Raio médio de distância dos fornecedores | Até 30 km |
| Utilização de tanque de depuração | Sim |
| Número de médio de funcionários | Pequeno porte 12-35
| Grande porte | 186-520 |
| Salário médio dos funcionários | R$ 1.300 a 1.500/mês (valores de 2015) |
| Percentual médio de mulheres | 30 a 80% |
Apesar da estrutura bem desenvolvida de abate existente na região, as instalações presentes não cobrem a totalidade da produção, favorecendo a ocorrência de processamentos sem inspeção sanitária pelos piscicultores não contemplados por esse mercado, geralmente localizados em propriedades mais distantes de frigoríficos. Essa prática ocorre principalmente nos períodos de maior oferta da tilápia ou nos períodos em que o mercado oferece maior preço de filé. A Figura 7.15 representa as regiões onde estão localizadas as unidades de processamento de tilápia.

Pela grande oferta de tilápia, o município de Toledo inaugurou um parque tecnológico em 2015 para a construção de mais quatro unidades frigoríficas, com tempo de implementação até 2018 e uma grande empresa do setor (Gomes da Costa Alimentos S.A.), estuda a instalação neste município de uma planta de processamento de tilápia, inaugurando a sua primeira planta com peixes de água doce.

Atualmente, este Polo possui uma das maiores concentrações de unidades de processamento de tilápia entre as demais regiões produtoras do país. A produção destas unidades é destinada não apenas ao mercado local e estadual, mas também é fortemente escoada para outros estados, dentre os quais se destacam Santa Catarina, São Paulo e Minas Gerais. Um dos diferenciais deste Polo é o preço competitivo da tilápia inteira e filé, os quais concorrem fortemente com os produtos de outras regiões (Tabela 7.6).

Figura 7.15. Localização, quantitativo de frigoríficos e unidades de processamento de tilápia com as devidas Certificações no Polo do Oeste PR.
Fonte: Adaptado de IBGE (2017).
Tabela 7.6. Principais características do mercado de tilápia no Polo do Oeste do PR.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal forma de apresentação da tilápia</td>
<td>Viva</td>
</tr>
<tr>
<td>(vendida pelo produtor)</td>
<td></td>
</tr>
<tr>
<td>Principal forma de apresentação da tilápia no</td>
<td>Filé congelado</td>
</tr>
<tr>
<td>varejo (vendida ao consumidor final)</td>
<td></td>
</tr>
<tr>
<td>Preço médio de venda pelo produtor (2015)*</td>
<td>R$ 3,60/kg</td>
</tr>
<tr>
<td>Custo médio de produção (Custo Operacional</td>
<td>R$ 3,00/kg</td>
</tr>
<tr>
<td>Efetivo-COE) (2015)**</td>
<td></td>
</tr>
<tr>
<td>Concentração de compradores para os produtores</td>
<td>Baixa.</td>
</tr>
<tr>
<td>Existência de contratos com compradores</td>
<td>Sim. Grande parte dos produtores trabalham em sistema de integração ou por meio de contratos com cooperativas e unidades de processamento privadas.</td>
</tr>
<tr>
<td>Localização dos principais compradores do filé</td>
<td>PR, SC, SP, MG</td>
</tr>
<tr>
<td>Canal de comercialização</td>
<td>Foodservice, atacadistas e supermercados e restaurantes</td>
</tr>
</tbody>
</table>

* Valores referentes à venda de produtor não integrado. No caso de integração, o valor recebido pelo produtor é calculado pelo integrador com base num cálculo que considera diversos indicadores zootécnicos e outros critérios como infraestrutura disponível. Valor de média em 2016 = R$ 3,70/kg; ** Baseado em dados do Projeto Campo Futuro da Aquicultura (Embrapa/CNA). O COE, neste caso, inclui os gastos diretamente envolvidos na produção (exc. insumos, mão de obra, energia, etc.), não considerando depreciação de equipamentos, prédio-labore e remuneração de capital.

Segundo os responsáveis pelas unidades de processamento entrevistados, uma das principais tendências no mercado de varejo de tilápia está a maior estabilidade da demanda ao longo do ano – em detrimento a uma concentração na época da semana santa tal como acontecia antigamente.

A utilização do couro de tilápia é outro fator que vem se desenvolvendo no Polo do Oeste paranaense (Figuras 7.16a, 7.16b e 7.16c). Apesar de ser ainda pequena a utilização desse subproduto, a região conta com algumas indústrias de pequeno porte que beneficiam o produto, produzindo principalmente utensílios de vestuário, calçados e artesanato. Algumas unidades de beneficiamento de tilápia também têm exportado a pele da tilápia para Europa, tendo por destinação final a produção de colágeno e outros subprodutos para uso cosmético e medicinal.

7.3.5. Infraestrutura do Polo

Esse Polo conta com uma boa infraestrutura básica de estradas, energia elétrica, ensino e pesquisa, indústrias de equipamentos e materiais para a atividade (aeradores, caixas de transporte, kits de qualidade de água), além de uma ampla quantidade de estruturas específicas para a cadeia produtiva da tilápia, como unidades de processamento, aleinagem, fábricas de ração, entre outros (Figuras 7.17a, 7.17b e 7.17c).

Tendo em vista a importância das estradas para o escoamento da produção de tilápia – haja vista a natureza frágil e perecível do pescado – vale destacar as boas condições das rodovias e estradas rurais do Oeste paranaense. Em diversos municípios deste Polo a parceria entre produtores e prefeitura possibilitou a pavimentação de várias estradas rurais (Figura 7.18a e 7.18b).

Figura 7.18a e 7.18b. Estradas rurais pavimentadas em municípios do Polo do Oeste do Paraná.

Este Polo também é particularmente bem atendido com relação ao segmento de alevinos e formas jovens, conforme apresentado no mapa ilustrado na Figura 7.19.
7.3.6. Mercado

O filé constitui a principal forma de apresentação da tilápia produzida no Polo do Oeste do Paraná. Nos supermercados da região é possível encontrar uma vasta gama de filés de tilápia, com diferentes tipos de embalagens e marcas. Neste sentido, vale ressaltar que a utilização de marca própria é uma estratégia de marketing amplamente empregada pelos produtores e unidades de processamento do Polo. Isso permite ao consumidor diferenciar os diferentes produtos ofertados, possibilitando uma fidelidade e uma atribuição de qualidade por parte do comprador que faz com que este pague um preço mais elevado por um determinado produto (Figuras 7.20a, 7.20b e 7.20c).

Além do filé, recentemente, indústrias de processamento tem investido na produção de outros produtos elaborados de tilápia voltados para o segmento de pratos prontos. Dentre esses pratos prontos, se destacam a lasanha, o steak e o escondidinho de tilápia (Figura 7.21).

Figura 7.21. Pratos prontos a base de tilápia produzidos no Polo do Oeste PR.
Fonte: Copacol (2017).
7.4. Governança e estrutura da cadeia de valor da tilápia

7.4.1. Estrutura da cadeia de suprimentos
Este Polo é estruturado no que se refere a produtores de insumos utilizados na produção de tilápia. Com exceção dos segmentos de medicamentos e software de gestão da produção, todos os demais insumos contam com indústrias localizadas dentro do Polo. Essa característica representa um aspecto positivo para a competitividade do Polo, haja vista a maior oferta de insumos e menor custo com transporte. A Tabela 7.7 apresenta a matriz de origem dos insumos e equipamentos utilizados no Polo do Oeste do Paraná.

Tabela 7.7. Matriz de insumos e equipamentos sua origem no Polo da região Oeste do Paraná.

<table>
<thead>
<tr>
<th>Insumo/Equipamento</th>
<th>Local de produção do insumo ou equipamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Medicamentos</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Aerador</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Software de gestão de produção</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Gelo</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Alevinos</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Kit e reagentes para análises de água</td>
<td>Dentro do Polo</td>
</tr>
</tbody>
</table>

Existe um número relativamente significativo de fábricas na região, algumas delas de cooperativas (ex: Coopacol, Primato, C-Vale, Copagril). Além de mais de 20 marcas disputando o mercado de ração para tilápias na região.

Majoria das fábricas estão em SP.

O Polo conta com indústrias importantes como a Trevisan Equipamentos Agroindustriais, de Palotina, PR. Existem empresas que atuam no setor, porém em outras regiões do Paraná. Todas as unidades de processamento possuem fábricas de gelo. A maioria dos tilapicultores estão localizados a menos de 30km da estação de alevinagem fornecedora.

O Polo conta com empresas como a Sulnepsa Indústria e Comércio de Equipamentos para Piscicultura e outras.

7.4.2. Governança da cadeia de valor
Uma das principais características do Polo de tilapicultura do Oeste paranaense se refere a forte atuação das cooperativas (Tabela 7.8). Grande parte do tilapicultores cooperados já eram membros das cooperativas, onde atuava em outros setores agropecuários como avicultura, suinocultura, produção de grãos e de leite. Neste sentido, tanto a infraestrutura já existente como a relação de parceria já estabelecida entre cooperado e cooperativa serviram como base para o desenvolvimento da produção de tilápia.

Tabela 7.8. Cooperativas atuantes na cadeia produtiva da tilápia no Polo do oeste do PR.

<table>
<thead>
<tr>
<th>Cooperativa</th>
<th>Segmentos de atuação na cadeia da tilápia</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOPACOL</td>
<td>Alevinagem, Ração, Processamento, Distribuição</td>
</tr>
<tr>
<td>COOPISCES</td>
<td>Farinha e óleo de peixe, Processamento, Distribuição</td>
</tr>
<tr>
<td>Cooperativa Primato</td>
<td>Ração</td>
</tr>
<tr>
<td>C.Vale</td>
<td>Projeto de integração vertical em implementação</td>
</tr>
<tr>
<td>COPAGRIL</td>
<td>Ração</td>
</tr>
</tbody>
</table>

Com capacidade de abate de 50 toneladas/dia em 2015 e em reforma para dobrar esse volume em um ano, a Coopacol conta com mais de 170 produtores de tilápia cooperados num raio de 60 km, destacando-se como a maior cooperativa produtora de tilápia do Polo e uma das maiores produtoras do país.

Recentemente a cooperativa C-Vale, uma das maiores cooperativas agrícolas do Brasil com mais de 17.000 cooperados, anunciou a implantação de um projeto de integração vertical para a produção de tilápia. A perspectiva é que já em 2018 esta cooperativa começará a produzir e finalizar sua estrutura para processamento de 50t/dia.
Cooperados tem modelo adaptado da avicultura

A Cooperativa fornece o alevino, ração, assistência técnica, despesca e logística. O piscicultor entra com a área e estrutura de cultivo, energia elétrica e o trabalho com a engorda.

Tabela de recompensa ao piscicultor é baseada em um cálculo que considera a conversão alimentar, a rendimento do filé, mortalidade e estrutura de cultivo e de acesso.

A cooperativa tem dois técnicos que auxiliam no projeto de construção dos tanques, documentação, licenciamento. Para esse auxílio, o piscicultor paga uma taxa referente aos valores de custo.

No entanto, muitos produtores do Polo estão excluídos do sistema de integração e na realidade por não serem cooperados, têm dificuldades de melhorar sua produtividade e acessar o mercado, principalmente pela falta de assistência técnica e de organização.

Tendo em vista o grande volume de tilapia processado pelas cooperativas e elevado número de piscicultores cooperados, verifica-se que as cooperativas têm um papel importante na governança da cadeia produtiva. Esse efeito sobre a governança da cadeia se dá principalmente por meio do balanço dos preços da venda tilapia pelo produtor no mercado regional, haja vista que o preço de venda das cooperativas acaba servindo como referência para valores praticados no atacado e varejo.

Outro efeito da atuação das cooperativas sobre a governança da cadeia produtiva se dá através dos padrões de qualidade da tilapia produzida por eles e também por meio das inovações desenvolvidas pelas cooperativas, seja em termos de tecnologia de produção ou com relação a novos subprodutos de tilapia.

Além das cooperativas, os abatedouros privados e os intermediários são outros agentes-chave desta cadeia produtiva. Juntamente com as cooperativas, esses agentes absorvem a maior parte da tilapia produzida no Polo do Oeste paranaense. Esses pequenos frigoríficos surgem de forma estratégica para o Polo, pois mantém uma proximidade com os demais produtores, absorvendo a sua produção em uma relação de grande fidelidade na comercialização entre as partes. Essa característica proporcionou a manutenção de pequenos produtores e produtores familiares no negócio. Tais frigoríficos, no geral, possuem o Serviço de Inspeção Municipal e abastecem o mercado local.

Apesar do número de intermediários atuantes neste Polo ser bem menor do que nos demais polos de tilapicultura do Brasil, verifica-se a presença de agentes que intermediam grandes volumes de tilapia que transportam tilapia para outras regiões. Um intermediário com grande atuação na região chega a comprar um volume de tilapia superior a 800 toneladas/ano.

A Figura 7.22 apresenta os canais de comercialização de tilapia do Polo do Oeste do Paraná.

Figura 7.22. Canais de comercialização de tilapia no Polo do Oeste do Paraná.
7.4.3. Análise competitiva do Polo do Oeste do Paraná

A análise das cinco forças de Michael Porter constitui uma ferramenta para o estudo competitivo de uma determinada indústria. No presente caso, o foco da análise é o segmento de engorda e seus principais atores – os piscicultores.

Com relação às barreiras à entrada de novos produtores na cadeia produtiva, pode-se afirmar que são baixas. Isso se deve principalmente ao fácil acesso ao pacote tecnológico da produção de tilápias e também ao fato de não haver uma necessidade imperativa de grandes escalas de produção para atender o mercado – ainda que maiores escalas possam determinar uma maior competitividade para os produtores.

No que se refere à ameaça de produtos substitutos, verifica-se – à exemplo dos demais polos de tilápias do Brasil - uma elevada competição com produtos substitutos, principalmente filés de pescados importados. Esses produtos importados podem ser oriundos da aquicultura, como o pangasius, ou da pesca como a polaca do Alaska ou merluza.

A análise competitiva do Polo de tilapicultura do Oeste do Paraná a partir do modelo de cinco forças de Porter é apresentada na Figura 7.23.

O poder de negociação dos compradores varia em função do perfil produtivo do piscicultor, ou seja, cooperado ou independente. No caso dos cooperados é bastante baixo frente à integradora, já que recebem os insumos da integradora sem custo, sendo remunerados pelo serviço. Mas o poder de negociação das cooperativas é médio tendo em vista que a grande escala de produção consolidada por essas organizações possibilita um maior poder de negociação junto a supermercados e demais clientes. Por outro lado, no caso dos piscicultores independentes, o poder de negociação dos compradores é maior haja vista o desequilíbrio em termos de porte, o qual favorece esses últimos.

Quanto ao poder de negociação dos fornecedores de insumos, e a exemplo do que ocorre na região Norte do Paraná, verifica-se uma relação de poder mais equilibrada tendo em vista o grande número de fabricantes e fornecedoras na região.

Por fim, o grau de rivalidade entre os piscicultores deste Polo é baixo tendo em vista o grande número de unidades de processamento e também devido ao preço competitivo da tilápia produzida em viveiro.

![Figura 7.23. Análise competitiva do Polo de tilapicultura do Oeste do Paraná a partir do modelo de cinco forças de Porter. Fonte: Elaboração própria.](image)

7.4.4. Distribuição do valor agregado

A análise da divisão do valor agregado ao longo da cadeia produtiva permite o entendimento sobre como cada um dos agentes se apropria do capital acumulado desde a produção até a venda do bem ao consumidor final (Figura 7.24).
Diagnóstico da cadeia de valor da tilapicultura no Brasil

A análise de divisão do valor agregado do filé de tilápia no Polo Oeste do Paraná mostra que os supermercados participam com a maior parcela, ou seja, 40% do valor final do produto vendido ao consumidor final. Os produtores e processadores respondem respectivamente 2 e 26% do valor final.

Percebe-se que a participação dos piscicultores da região oeste (2%) é menor que a dos produtores do Polo do Norte paranaense (7%). Essa característica está diretamente ligada aos menores preços praticados neste Polo, o qual lhe confere uma posição competitiva frente a demais polos de tilapicultura do Paraná e de outras partes do Brasil.

7.5. Arcabouço legal e regulatório

7.5.1. Regulação ambiental

Tendo em vista que o sistema de produção predominante no Polo Oeste é o de viveiros escavados, o processo de regularização ambiental consiste na licença e, eventualmente, outorga de uso de água. Esses processos são geridos pelo Instituto Ambiental do Paraná (IAP) que atua não só na produção mas também no licenciamento de abatedouros e alevinagem. O custo de publicação para licença ambiental em 2015 foi de R$1200,00 mais o valor semestral de R$ 200,00 para análise obrigatória de água.

É importante ressaltar que este Polo foi o que apresentou a maior rapidez no processo de licenciamento ambiental, levando em média três meses para a obtenção das referidas licenças, beneficiando os produtores com a facilidade de conseguirem empréstimos via PRONAF. No entanto, deve se ressaltar que o processo de licenciamento para produção em viveiros escavados é, de fato, mais rápido em todos os estados. Mas a exigência de tratamento de efluentes é um importante gargalo ambiental deste tipo de sistema de cultivo e deve passar a ser prática rotineira entre os produtores do Polo (Tabela 7.9).

7.5.2. Políticas públicas de fomento e extensão

Há na região um programa chamado “Oeste em desenvolvimento” liderado pela iniciativa privada e pela organização civil, organizado com apoio do SEBRAE, que está trabalhando para organizar e desenvolver cadeias produtivas importantes da região, na qual a cadeia da tilápia foi incluída. O programa está na fase inicial de levantamento de demandas através de reuniões participativas de todos os elos da cadeia. A expectativa para desenvolvimento ordenado e fortalecimento da cadeia é grande.

O crédito do plano safra aquicultura tem auxiliado os produtores do Polo que através da EMATER-PR tem proporcionado o PRONAF a muitos produtores familiares.

Há, ainda, o “Projeto MPA 035” que é um convênio da EMATER-PR com o Ministério da Pesca e Aquicultura para auxiliar os trabalhos de assistência
técnicas e desenvolvimento da cadeia da piscicultura no estado, que ainda está em andamento, mesmo após a extinção do MPA. A Tabela 7.10 apresenta as principais instituições atuantes no setor neste Polo.

Tabela 7.10. Principais instituições atuantes no Polo de tilapicultura do Oeste do PR.

<table>
<thead>
<tr>
<th>Instituição</th>
<th>Principais áreas de atuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMATER-PR</td>
<td>Extensão e assistência técnica</td>
</tr>
<tr>
<td>SiCREDI e Banco do Brasil</td>
<td>Financiamento de custeio e investimento</td>
</tr>
<tr>
<td>Universidades (UNIOESTE, FAE, PUC, UNIPAR, FASUL)</td>
<td>Pesquisa e extensão</td>
</tr>
<tr>
<td>SEBRAE</td>
<td>Levantamento de demandas e estratégias de ação</td>
</tr>
<tr>
<td>ADAPAR</td>
<td>Fiscalização Sanitária / Inspeção de produtos</td>
</tr>
<tr>
<td>PREFEITURAS MUNICIPAIS</td>
<td>Apoio à infraestrutura e assistência técnica</td>
</tr>
<tr>
<td>MAPA</td>
<td>Inspeção Sanitária</td>
</tr>
</tbody>
</table>

A EMATER-PR tem uma forte atuação na cadeia produtiva da tilápia neste Polo. Além das ações de assistência técnica, a EMATER-PR realiza diversas atividades como reuniões técnicas, dias de campo, dentre as quais se destaca o Seminário Regional de Piscicultura de Maripá (Figura 7.25). Esse é um dos principais eventos técnicos voltados para a tilapicultura na região, sendo promovido pela EMATER-PR em parceria com a AQUIMAP (Associação dos Aquicultores de Maripá), Cooperativa C-Vale e prefeitura Municipal de Maripá.

7.6. Principais gargalos

A necessidade de maior qualidade das formas jovens de tilápia se apresenta como um dos principais gargalos levantados pelos tilapicultores e demais agentes entrevistados. Além da demanda por linhagens adaptadas às condições climáticas locais, em especial às baixas temperaturas, registradas durante o inverno, que causam uma sazonalidade da produção ao longo do ano (Tabela 7.11).

Outro gargalo importante se refere à escassez de mão de obra para trabalhar nas pisciculturas e também nas unidades de processamento. Neste contexto, vale ressaltar que o Oeste paranaense é uma região que conta com um grande número de agroindústrias que demandam um grande efetivo de trabalhadores. Tendo em vista que, de uma maneira geral, o setor agroindustrial paga salários um pouco maiores para o trabalhador, verifica-se uma relativa competição por mão de obra que desfavorece os piscicultores.

Um exemplo da escassez da mão de obra é verificada numa grande unidade de processamento de tilápia, que disponibiliza transporte que percorre diariamente até 130 km para buscar funcionários para trabalhar na agroindústria. Nessa mesma agroindústria cerca de 10% do efetivo é formado por estrangeiros.

Figura 7.25. XIV Seminário Estadual de Aquicultura do Paraná.
Tabela 7.11. Principais gargalos do Polo do Oeste do Paraná.

<table>
<thead>
<tr>
<th>Gargalo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualidade dos alevinos</td>
<td>Praticamente todos os produtores entrevistados destacam a necessidade de melhorar a qualidade dos alevinos fornecidos no Polo.</td>
</tr>
<tr>
<td>Mão de obra</td>
<td>A região conta com diversas indústrias e agroindústrias, o que acaba por gerar uma competição por mão de obra para as grandes pisciculturas.</td>
</tr>
<tr>
<td>Custo de produção elevado</td>
<td>Tendo em vista a elevada utilização de aeradores, há um alto custo com energia elétrica, afetando também os produtores cooperados.</td>
</tr>
<tr>
<td></td>
<td>Alto preço das rações, que apesar de ser o menor entre os polos e a possibilidade de fornecimento à granel, ainda é elevado para o pequeno produtor local. Este quesito específico não afeta o cooperado, já que a ração é fornecida pelo integrador.</td>
</tr>
<tr>
<td>Necessidade de mais unidades de processamento</td>
<td>A maior oferta de unidades de processamento aumentará as possibilidades de venda de tilápia pelos produtores. Ainda que o Polo tenha 22 frigoríficos, A grande maioria é de pequeno porte, deixando descoberto um grande número de pequenos produtores que existe na região</td>
</tr>
<tr>
<td>Falta de profissionalismo dos piscicultores</td>
<td>Necessário melhorar o conhecimento técnico dos piscicultores para melhorar a eficiência e a produtividade das pisciculturas da região</td>
</tr>
<tr>
<td>Falta de consciência associativista</td>
<td>Importante desenvolver maior conscientização associativista dos produtores para que possam se organizar e melhorar seus custo de produção e trabalharem os canais de venda, mesmo sendo uma região com cooperativas e associações, as mesmas não abrangem muitos produtores</td>
</tr>
<tr>
<td>Falta de Tratamento das águas residuais dos viveiros de cultivo</td>
<td>Não é realizado o tratamento das águas drenadas dos viveiros causando poluição ao meio ambiente</td>
</tr>
<tr>
<td>Falta de licenciamento ambiental</td>
<td>Cumprimento de exigência legal para regularização da atividade de piscicultura no órgão ambiental</td>
</tr>
<tr>
<td>Falta de Assistência Técnica</td>
<td>Necessidade de ampliação da Assistência Técnica oficial e privadas</td>
</tr>
</tbody>
</table>

7.7. Perspectivas futuras do Polo de tilapicultura do Oeste do Paraná

A maioria dos agentes entrevistados acredita numa perspectiva de crescimento da cadeia produtiva, tendo por base o aumento da oferta oriunda da produção local. Existe também uma grande expectativa quanto ao início da produção de tilápia em tanque-rede no reservatório da Usina Hidrelétrica de Itaipu, localizada próxima a região. Dada o grande potencial disponível neste reservatório, existe a perspectiva de uma grande produção de tilápia, que de certo modo impactará na cadeia produtiva atualmente já estabelecida na região. Resumidamente, as principais tendências estão citadas na Tabela 7.12.

<table>
<thead>
<tr>
<th>Tendência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento da oferta de tilápia</td>
<td>O aumento da oferta se dará a partir da expansão dos projetos existentes e entradas de novos produtores. A perspectiva de produção em tanque-rede no lago da Usina de Itaipu também poderá aumentar muito a produção</td>
</tr>
<tr>
<td>Inauguração de novas unidades de processamento</td>
<td>Diversos projetos estão previstos, dentre os quais um distrito agroindustrial de processamento de tilápia no município de Toledo.</td>
</tr>
</tbody>
</table>

Com a expectativa de aumento da produção, os agentes acreditam também num crescimento do número de unidades de processamento de tilápia na região. Segundo os produtores, existe uma demanda por novas agroindústrias, haja vista a produção crescente. A Prefeitura Municipal de Toledo tem se mobilizado para desenvolver um projeto de distrito agroindustrial voltado para o processamento de tilápia.
8. Diagnóstico do Polo de Tilapia de Santa Catarina
8.1. Aspectos gerais

8.1.1. Aspectos geográficos e climáticos do Polo

Segundo dados da EPAGRI (2015), a produção de tilápia está dispersa em praticamente todo o estado de Santa Catarina, exceto na região sudoeste (Figura 8.1).

A região do Norte de Santa Catarina, e alguns municípios do seu entorno, constitui o principal polo de produção de tilápia de Santa Catarina (Figura 8.2).

![Figura 8.2. Polo de tilápicultura do Vale do Itajaí e entorno, Santa Catarina. Fonte: EPAGRI (2015).](image)

A microrregião de Joinville concentra os maiores municípios produtores de tilápia de Santa Catarina, com destaque para Massaranduba e Jaraguá do Sul. A microrregião de Blumenau é a segunda mais importante em volume de produção de tilápia, destacando-se os municípios de Timbó e Gaspar, vide Figura 8.3.

A tilápicultura catarinense é principalmente desenvolvida em sistemas de viveiro escavado. Outra característica marcante deste Polo se refere a forte presença de produtores familiares. De fato, a agricultura familiar é fortemente presente em Santa Catarina, sendo o setor agropecuário do estado marcado por propriedades de pequeno porte.
Figura 8.3. Produção de tilápia em Santa Catarina por microrregiões municipais, demonstrando maiores concentrações nas microrregiões de Joinville, Tubarão, Blumenau e Rio do Sul.

Dentre as principais condições favoráveis ao desenvolvimento da tilapicultura de Santa Catarina destacam-se:

- Importante mercado consumidor das cidades da região
- Boa infraestrutura de transporte
- Recursos hídricos disponíveis
- Solos com alta concentração de argila

Com relação à infraestrutura viária, Santa Catarina possui mais de 62 mil km de estradas federais, estaduais e municipais, a segunda de melhor qualidade em todo o País. Todos os 293 municípios possuem rodovias de acesso. A rodovia BR-101, principal via de ligação entre Santa Catarina e os demais estados pelo litoral, foi duplicada entre Florianópolis e o Norte do Estado para facilitar o escoamento da produção catarinense para os grandes centros consumidores da região Sudeste. A malha viária conta, ainda com outras duas importantes rodovias: a BR-116, com 310 km de extensão, que atravessa o interior do Estado no sentido Norte–Sul, conectando-o com os estados vizinhos; e a BR-282, com 690 km de extensão, que corta transversalmente o Estado, ligando a capital Florianópolis à Argentina (Figura 8.5).
O Estado de Santa Catarina possui mais de 502 km² de águas continentais (SANTA CATARINA, 1986), as quais estão divididas entre três unidades hidrológicas brasileiras, nesta ordem apresentadas por área de ocupação no estado: UH Uruguai Nacional, UH Litorânea SC-PR e UH Iguaçu. A maior concentração de reservatórios de água (açudes, lagos e barragens) está na unidade hidrológica Uruguai Nacional, com destaque para os reservatórios originados do barramento do Rio Uruguai e do Rio Pelotas: Foz do Chapecó, com área total de 79,2 km², Ita, com 103 km², Machadinho, com 79,7 km² e Barra Grande, com 94 km². O mapa da hidrografia de Santa Catarina é ilustrado na Figura 8.6.

A precipitação também é um fator importante para a finalidade aquícica, uma vez a água da chuva afeta parâmetros físico-químicos da água, como turbidez, temperatura, pH, cor, oxigeração da água, além de ajudar na diluição de efluentes lançados pela aquicultura. Como pode-se notar na Figura 8.7, a região nordeste do estado é que possui maior volume de chuvas durante o ano, seguido da região oeste do estado. Já a região com menor índice de precipitação anual é a sudeste.
Outro fator favorável à piscicultura em viveiros escavados é a concentração de argila nos solos de Santa Catarina. Os solos classificados como muito argilosos estão concentrados principalmente na região central do estado, no oeste e na região da Serra catarinense (Figura 8.8).

Tendo em vista tal disponibilidade hídrica e concentração de argila no solo, o estado de Santa Catarina tem potencial aquícola para produção em viveiros escavados e tanques-rede. Porém, é importante destacar que, tal como ocorre com os polos de tilapicultura do Paraná, o estado de Santa Catarina apresenta baixa temperatura durante alguns meses do ano (principalmente junho e julho), o qual resulta numa sazonalidade da produção de tilápia. A seguir são apresentados nos mapas do Atlas Climatológico do Estado de Santa Catarina a média das temperaturas médias anuais em °C (Figura 8.9) e a média das temperaturas mínimas no mês de julho (mais frio) (Figura 8.10).
Segundo Pandolfo et al. (2002), o Estado de Santa Catarina comporta duas classes climáticas da classificação de Köppen, sendo estas: clima subtropical (mesotérmico úmido e verão quente) e temperado (mesotérmico úmido e verão ameno).

Segundo a classificação de Köppen (OMETO, 1981 citado por PANDOLFO et al., 2002) o clima subtropical possui temperatura média no mês mais frío inferior a 18°C (mesotérmico) e temperatura média no mês mais quente acima de 22°C, com verões quentes, geadas pouco frequentes e tendência de concentração das chuvas nos meses de verão, contudo sem estação seca definida. O clima temperado, por sua vez, tem temperatura média no mês mais frío abaixo de 18°C (mesotérmico), com verões frescos, temperatura média no mês mais quente abaixo de 22°C e sem estação seca definida. A seguir é apresentado na Figura 8.11 o mapa climático segundo a classificação de Köppen.

Outro fator que deve se levar em consideração é o relevo encontrado no estado, predominantemente ondulado a montanhoso, sendo que o relevo desejável para construção de viveiros deve ser plano a suave inclinado (de 0 a 0,5%).

A existência de infraestrutura de apoio (rodovias, energia elétrica, assistência técnica etc.) – assim como importante mercado consumidor regional – são fatores importantes para a consolidação da cadeia produtiva da tilápia. Deste modo, o estado de Santa Catarina oferece condições relativamente favoráveis ao desenvolvimento do setor.
8.2. Caracterização da tilapicultura no Polo de Santa Catarina

8.2.1. Perfil dos produtores

A exemplo do que ocorre no Oeste paranaense, a produção catarinense de tilápia é composta, principalmente por piscicultores familiares operando em sistema de viveiro escavado. No entanto, os tilicultores catarinenses apresentam um menor volume médio de produção anual, 30 a 60 toneladas por ano (Tabela 8.1). No Oeste do Paraná essa média varia de 20 até 100 toneladas/ano.

<table>
<thead>
<tr>
<th>Sistema de produção</th>
<th>Tempo médio de experiência na produção de tilápia</th>
<th>Volume médio de produção (t/ano)</th>
<th>Mão de obra familiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viveiro escavado</td>
<td>15-20 anos</td>
<td>30-60</td>
<td>Sim</td>
</tr>
</tbody>
</table>

Os produtores possuem uma experiência relativamente importante, variando entre 15 a 20 anos na atividade de produção de tilápia, o que se mostra significativo.

8.2.2. Características produtivas

Os produtores do Polo fazem pouco uso de crédito bancário, utilizando recursos próprios para financiar a piscicultura. Com relação a assistência técnica, merece destaque o fato que além da EPAGRI, as fábricas de ração e as associações também oferecem suporte técnico aos tilicultores. A Tabela 8.2 apresenta as principais características produtivas da tilápia neste Polo.

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilização de financiamento bancário</td>
<td>Maioria não utiliza</td>
</tr>
<tr>
<td>Status da área em terra</td>
<td>Própria</td>
</tr>
<tr>
<td>Assistência técnica pública</td>
<td>Sim, Através da EPAGRI. Também utilizam assistência das fábricas de ração e das Associações.</td>
</tr>
<tr>
<td>Produção exclusiva de tilápia</td>
<td>Não. Existência de policultivo, principalmente com carpas e traira.</td>
</tr>
<tr>
<td>Participação em organização produtiva</td>
<td>Poucas cooperativas, porém, grande participação dos tilicultores em associações.</td>
</tr>
</tbody>
</table>

No que se refere às organizações produtivas, a região não conta com cooperativas atuando diretamente na cadeia produtiva da tilápia. No entanto, existe uma participação bastante ativa de associações de piscicultores. Além de realizar atividades de representação social e política dos tilicultores, essas associações também realizam ações de compra coletiva de insumos e, como já citado, dão assistência técnica.

A partir da base de dados fornecida pela EPAGRI (2015), foram elaborados os mapas de Cooperativismo e Associativismo da Aquicultura no Estado de Santa Catarina (Figuras 8.12 e 8.13), bem como um mapa do quantitativo de adesões às associações no referido estado (Figura 8.14).

8.2.3. Caracterização tecnológica

Os tilipicultores de Santa Catarina apresentam um perfil tecnológico similar àqueles do Oeste paranaense, no entanto, os indicadores zootécnicos relativos à densidade final e taxa de conversão alimentar diferem daquele polo. No Paraná a densidade varia de 2,8 a 5,6 kg/m³ e em Santa Catarina a densidade final é de 2,4 kg/m³.

Apesar dos cultivos consorciados de piscicultura com suinocultura e avicultura terem sido populares em Santa Catarina, atualmente esses modelos não são predominantes dentro da cadeia produtiva da tilápia. O sistema de produção atualmente mais comum é o de viveiro escavado sem consorciação, utilizando rações convencionais e aeração artificial. Os parâmetros médios utilizados na tilapicultura deste polo estão resumido na Tabela 8.3.

Tabela 8.3. Principais características dos tilipicultores de Santa Catarina.

<table>
<thead>
<tr>
<th>Parâmetros médios</th>
<th>Viveiro escavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principais tipos de estrutura de cultivo</td>
<td>Viveiros em terra com tamanho médio entre 0,5 a 2,0 ha de lâmina d’água total</td>
</tr>
<tr>
<td>Principais limitações ambientais</td>
<td>Baixa temperatura da água nos meses mais frios</td>
</tr>
<tr>
<td>Sazonalidade</td>
<td>Sim (junho a agosto)</td>
</tr>
<tr>
<td>Duração do ciclo (alevino de 2g até 800 g)</td>
<td>8 a 10 meses (240-300 dias, podendo variar de acordo com a rigidez do inverno)</td>
</tr>
<tr>
<td>Densidade final (Kg peso vivo/m³)</td>
<td>2,4 (3 peixes/m³)</td>
</tr>
<tr>
<td>Uso de vacina</td>
<td>Não</td>
</tr>
<tr>
<td>Uso de outros produtos veterinários</td>
<td>Sim, probióticos.</td>
</tr>
<tr>
<td>Taxa de conversão alimentar</td>
<td>1,3</td>
</tr>
<tr>
<td>Utilização de cadeia do frio</td>
<td>Sim</td>
</tr>
<tr>
<td>Policultivo</td>
<td>Sim, principalmente com carpa e traíra.</td>
</tr>
</tbody>
</table>

Os produtores catarinenses também sofrem coma sazonalidade devido ao período frio entre os meses de março a agosto. Esse fator, aliado a utilização de alevinos de 2 g, faz com que a duração do ciclo seja de até 10 meses para um peixe com peso final de 800 g. A Tabela 8.4 apresenta uma síntese das principais tecnologias utilizadas no Polo.
Diagnóstico da cadeia de valor da tilapicultura no Brasil

Tabela 8.4. Principais tecnologias utilizadas na produção de tilápia no Polo de Santa Catarina.

<table>
<thead>
<tr>
<th>Tecnologias</th>
<th>Utilização comum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Despesca semiautomática</td>
<td>Não</td>
</tr>
<tr>
<td>Aerador</td>
<td>Sim</td>
</tr>
<tr>
<td>Alimentador automático</td>
<td>Sim</td>
</tr>
<tr>
<td>Classificação automática</td>
<td>Não</td>
</tr>
</tbody>
</table>

A utilização de aerador e alimentador automático são práticas comuns entre tilapicultores, e possibilitam economia de mão de obra e intensificação dos cultivos (Figura 8.15).

8.2.4. Agregação de valor e estrutura de mercado

A produção catarinense de tilápia é voltada fortemente para o segmento de pesque-pague. De fato, segundo dados da EPAGRI (2015), mais de 50% da tilápia produzida em Santa Catarina é comercializada através dos 260 pesque-pagues existentes no Estado.

Tradicionalmente voltados para o lazer e prática de pesca esportiva, os pesque-pagues catarinenses tem evoluído e diversificado, passando a atuar como canal de varejo especializado que oferece o serviço de restaurante e também comercializa filé e outros cortes de tilápia. Segundo os proprietários deste tipo de estabelecimento entrevistados, a atividade de pesca e de venda de peixe vivo tem diminuído sua importância, face a atuação dos restaurantes existentes nesses empreendimentos (Figura 8.16).

Figura 8.15. Alimentador automático e aerador utilizados no Polo de Santa Catarina.

Figura 8.16. Restaurantes de pesque-pagues no Polo de Santa Catarina.
Neste sentido, os pesque-pagues tem investido fortemente nas suas estruturas, oferecendo um espaço diferenciado de lazer voltado principalmente para as famílias. Essas estruturas incluem diversos equipamentos de lazer como campo de futebol, parque infantil, cervejarias artesanais, pedalinhos e jardins (Figura 8.17).

A partir do banco de dados da EPAGRI (2015), foi elaborado o mapa de concentração de pesque-pagues em Santa Catarina no ano de 2012 (Figura 8.18), o qual demonstra que a região norte e nordeste do estado são as que concentram o maior número de pesque-pagues, com destaque para os municípios de Blumenau, Gaspar e Brusque.

Figura 8.17. Infraestrutura de lazer dos pesque-pagues no Polo de Santa Catarina.

Além dos pesque-pague, outro canal de comercialização da tilápia são as unidades de processamento que visam principalmente o mercado de fileis. Segundo dados da EPAGRI (2015), o estado de Santa Catarina conta com 12 unidades processamento de tilápia com SIE (Serviço de Inspeção Estadual).

A maioria das unidades de processamento de tilápia é de pequeno porte, com produção média de processamento de duas toneladas de tilápia/semana. Essas unidades pertencem a pequenos produtores, associações e também pesque-pague. Uma representação deste tipo de unidade é apresentada na Figura 8.19.

![Figura 8.19. Unidade de processamento de tilápia de pequeno porte em construção, Santa Catarina.](image)

Tendo em vista que as unidades em geral são de pequeno porte, implica que as mesmas possuam um quadro reduzido de funcionários (entre 3 e 4). Além disso, o raio médio percorrido pelas agroindústrias até chegar aos seus fornecedores de peixe é relativamente curto, apenas 30 km. A média dos principais parâmetros de cultivo de tilápia deste Polo está descrito na Tabela 8.6.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidade média de abate das unidades de processamento da região</td>
<td>2 toneladas/semana</td>
</tr>
<tr>
<td>Rendimento médio de filei no processamento (em % do peso total do peixe)</td>
<td>30-35%</td>
</tr>
<tr>
<td>Percentual de tilápia de terceiros</td>
<td>30%</td>
</tr>
<tr>
<td>Raio médio de distância dos fornecedores</td>
<td>Até 30 km</td>
</tr>
<tr>
<td>Utilização de tanque de depuração</td>
<td>Sim</td>
</tr>
<tr>
<td>Número de médio de funcionários</td>
<td>3-4 funcionários</td>
</tr>
<tr>
<td>Salário médio dos funcionários</td>
<td>R$ 1.500 a R$ 2.000/mês</td>
</tr>
<tr>
<td>Percentual médio de mulheres</td>
<td>25 a 60%</td>
</tr>
</tbody>
</table>

As unidades de processamento possuem um grande número de clientes, principalmente restaurantes e canais varejistas como supermercados e mercados públicos (Tabela 8.7). Alguns processadores atualmente têm atendido ao comércio institucional, sendo o PNAE (Programa Nacional de Alimentação Escolar) o mais importante. Em alguns casos uma única unidade de processamento possui mais de 50 compradores.

Ao contrário das unidades de processamento do Paraná, que atendem a vários estados, a produção catarinense abastece principalmente seu mercado local. O menor volume de processamento e a existência de um importante mercado consumidor local explicam essa situação.
Tabela 8.7. Principais características do mercado de tilápia em Santa Catarina.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal forma de apresentação da tilápia (vendida pelo produtor)</td>
<td>Viva</td>
</tr>
<tr>
<td>Principal forma de apresentação da tilápia no varejo (vendida ao consumidor final)</td>
<td>Filé</td>
</tr>
<tr>
<td>Preço médio de compra do produtor</td>
<td>R$ 4,20/kg</td>
</tr>
<tr>
<td>Custo médio de produção (Custo Operacional Efetivo-COE) (2015)*</td>
<td>R$ 3,78/kg</td>
</tr>
<tr>
<td>Concentração de compradores</td>
<td>Baixa. Grande parte da produção das unidades de processamento é vendida de forma dispersas em diversos canais de varejo e restaurantes.</td>
</tr>
<tr>
<td>Existência de contratos com compradores</td>
<td>Não</td>
</tr>
<tr>
<td>Localização dos principais compradores</td>
<td>Mercado regional</td>
</tr>
<tr>
<td>Principais compradores dos produtores</td>
<td>Restaurantes, lanchonetes e supermercados</td>
</tr>
</tbody>
</table>

* Baseado em dados do Projeto Campo Futuro da Aquicultura (Embrapa/CNA). O COE inclui os gastos diretamente envolvidos na produção (ex.: insumos, mão de obra, energia elétrica impostos, manutenção, etc.), não considerando depreciação de equipamentos, prod-labore e remuneração de capital. Fonte: Dados do estudo.

8.2.5. Infraestrutura do Polo

O estado de Santa Catarina se destaca pelo grande número de fabricantes de equipamentos e insumos utilizados na aquicultura e na pesca. Algumas das principais indústrias brasileiras do setor estão localizadas no estado. A origem deste setor industrial está, historicamente ligada à atividade pesqueira, porém nos últimos anos essas empresas tem intensificado suas ações na aquicultura.

A Tabela 8.8 abaixo apresenta uma lista com um número estimado de fabricantes de alguns insumos e equipamentos utilizados na cadeia produtiva da tilápia.

Tabela 8.8. Fabricantes de insumos e equipamentos para aquicultura em Santa Catarina.

<table>
<thead>
<tr>
<th>Insumo/equipamento</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>6</td>
</tr>
<tr>
<td>Alevinos</td>
<td>27</td>
</tr>
<tr>
<td>Redes</td>
<td>1</td>
</tr>
<tr>
<td>Kits de análise de água</td>
<td>1</td>
</tr>
<tr>
<td>Instrumentos de medição de parâmetros de água</td>
<td>1</td>
</tr>
<tr>
<td>Equipamentos para processamento de pescado</td>
<td>3</td>
</tr>
<tr>
<td>Aeradores</td>
<td>5</td>
</tr>
<tr>
<td>Caixas de transporte de peixe vivo</td>
<td>2</td>
</tr>
<tr>
<td>Alimentadores automáticos</td>
<td>7</td>
</tr>
<tr>
<td>Outros equipamentos (incubadoras, bombas hidráulicas, etc.)</td>
<td>12</td>
</tr>
</tbody>
</table>

Além das grandes indústrias de equipamentos, verifica-se também a existência de pequenos fabricantes artesanais de equipamentos para aquicultura, como por exemplo, aeradores e alimentadores automáticos (Figura 8.20).

Figura 8.20. Pequena fábrica de aeradores e alimentadores automáticos, Santa Catarina.
No que se refere à infraestrutura básica, o estado também se destaca por possui uma ampla rede de estradas e rodovias, além de portos e aeroportos. A quase totalidade dos produtores tem acesso à energia elétrica.

A cadeia produtiva da tilápia de Santa Catarina conta com um suporte institucional importante em se tratando de pesquisa e extensão. A EPAGRI desenvolve diversas ações de pesquisa e assistência técnica junto aos produtores de tilápia do estado e está presente nas diferentes microrregiões do estado, porém a região nordeste e leste do estado são onde estão concentrados a maior parte dos extensionistas, com destaque para a microrregião de Blumenau e os municípios de Camboriú (4 extensionistas), Itajaí (3 extensionistas) e Florianópolis (3 extensionistas). Por outro lado, existem poucos escritórios com técnicos especializados em piscicultura, sendo estes Lajes, Caçador, Porto União e Chapecó. A seguir é ilustrado na Figura 8.21 os municípios que contam com extensionistas rurais da EPAGRI.

Além disso, existe uma importante atuação por parte de algumas prefeituras locais, dentre as quais se destaca Joinville, que executa diversas ações de pesquisa e extensão aquícola através da Fundação 25 de Julho. Essas atividades são realizadas na estação experimental da Fundação 25 de julho e junto à alguns piscicultores (Figura 8.22).

Figura 8.21. Quantitativo de Extensionistas da EPAGRI por municípios de Santa Catarina.
8.2.6. Mercado

Como já mencionado, os pesque-paguês constituem um dos principais canais de varejo de tilápia no estado de Santa Catarina. Esses estabelecimentos tem se especializado em fornecer pratos à base de tilápia nos seus restaurantes, não apenas durante o fim de semana, mas também ao longo da semana para um público mais comercial.

Neste contexto, o fato dos pesque-paguês estarem localizados próximos a cidades de médio e grande porte, como Blumenau e Joinville, contribui para acesso de público consumidor de mais de 1,5 milhão de habitantes.

Além de venda de pratos com tilápia no cardápio dos restaurantes dos pesque-paguês, estes também tem sido um importante canal de venda de filé de tilápia e outros subprodutos como empanados, iscas de tilápia e sopas (Figura 8.23).

Figura 8.22. Estrutura de pesquisa e extensão da fundação 25 de julho, Joinville, SC.

Figura 8.23. Produtos a base de tilápia produzidos e comercializados nos pesque-paguês.

Os supermercados, os mercados públicos e os restaurantes, também são importantes canais de varejo para a venda de tilápia.
8.3. Governança e estrutura da cadeia de valor da tilápia

8.3.1. Estrutura da cadeia de suprimentos

O Polo de tilapicultura de Santa Catarina, como já citado, possui um grande número de empresas fabricantes e fornecedores de insumos e equipamentos para o setor. Neste aspecto o Polo apresenta uma vantagem competitiva face a outras regiões de produção que não contam com uma indústria de insumos consolidada.

Tabela 8.9. Matriz de origem dos insumos e equipamentos utilizados no Polo de Santa Catarina.

<table>
<thead>
<tr>
<th>Insumo/Equipamento</th>
<th>Local de produção do insumo ou equipamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ração</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Medicamentos</td>
<td>Fora do Polo</td>
</tr>
<tr>
<td>Aerador</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Software de gestão de produção</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Gelo</td>
<td>Dentro do Polo</td>
</tr>
<tr>
<td>Alevinos</td>
<td>Dentro do Polo</td>
</tr>
</tbody>
</table>

Considerando que, durante as entrevistas realizadas para a elaboração do diagnóstico, foi identificado que a área de atuação das fábricas de ração é, em média, de 100 km, foi gerada uma malha de distância em Sistema de Informações Geográficas utilizando um raio desta medida no entorno das fábricas sobre a malha rodoviária, chegando ao mapa da Figura 8.24 a seguir.
8.3.2. Governança da cadeia de valor

O perfil familiar dos produtores, o grande número de pequenas unidades de processamento (abatedouros) e a forte atuação dos pesque-pagues constituem as características Principais que determinam a governança da cadeia produtiva da tilápia em Santa Catarina. A estrutura de comercialização da tilápia neste Polo está representada na Figura 8.25.

![Diagrama da governança da cadeia de valor]

Figura 8.25. Canais de comercialização de tilápia no Polo de Santa Catarina.

Esse grande número de canais de venda de pequeno porte resulta numa relação de poder mais equilibrada entre produtores e compradores uma vez que a comercialização não está concentrada em um ou poucos agentes de grande porte.

A maioria dos piscicultores entrevistados afirmou comercializar sua produção tanto para abatedouros como para pesque-pagues. Deste modo, os piscicultores ampliam suas opções de comercialização, o que resulta não apenas numa minimização de risco ligados ao risco de inadimplência por parte do comprador, mas também permite aos produtores obter melhores preços, haja vista o maior leque de opções de venda.

Esse equilíbrio possibilita, por exemplo, a manutenção de preços de venda ao produtor mais elevado do que aqueles praticados no Oeste do Paraná, onde há uma maior concentração dos canais de comercialização.

O maior leque de canais de venda também resulta num fluxo de caixa mais contínuo para o piscicultor devido a maior fragmentação das vendas ao longo do ano. Por outro lado, isso requer um maior esforço de despesca, tendo em vista que esta atividade é realizada com mais frequência.

Dado que os abatedouros possuem exigências de qualidade diferentes daquelas dos pesque-pagues – que normalmente exigem peixes maiores – isso permite aos piscicultores realizar uma segmentação da venda da tilápia produzida em função do seu padrão de qualidade e tamanho. No entanto, é importante ressaltar que este modo de governança mais fragmentado e baseado em relações de mercado sem contratos estabelecidos também possui algumas desvantagens. Dentre elas, se destaca a incerteza quanto ao preço a ser pago pelo peixe, haja vista que não existe um contrato pré-estabelecido.

Outro aspecto negativo se refere ao maior esforço por parte do piscicultor para atender diversos compradores diferentes, que realizam compras de menor volume e sem uma previsibilidade quanto ao momento em que será realizada a transação. A existência de um contrato de fornecimento com um único comprador – como é o caso das cooperativas do oeste paranaense – permite ao produtor ter uma maior previsibilidade quanto ao preço a ser recebido e ao momento da venda.

8.3.3. Análise competitiva

A análise das cinco forças de Michael Porter constitui uma ferramenta para o estudo competitivo de uma determinada indústria. No presente caso, o foco da análise é o segmento de terminação e seus principais atores – os piscicultores (Figura 8.26).

No que tange às barreiras à entrada de novos produtores na cadeia produtiva, verifica-se que estas são baixas, devido sobretudo a facilidade em se obter as tecnologias necessárias a produção da tilápia. Contribui também ao fato das escalas de produção não serem necessariamente elevadas para acessar o mercado – ainda que maiores escalas possam determinar uma maior competitividade para os produtores.
Diagnóstico da cadeia de valor da tilápicultura no Brasil

Com relação à ameaça de produtos substitutos, tal como nos demais polos de tilápia do Brasil, foi observada uma forte competição com produtos substitutos, principalmente filé de pescados importados. Além disso, é importante destacar que Santa Catarina possui uma importante indústria pesqueira, o que de certo modo contribui para a competição com a tilápia, haja vista a maior oferta de peixes de captura. Essa mesma indústria é também, em grande parte, responsável pela importação de filés.

Ameaça de novos entrantes (Barreiras à entrada)
- Baixa barreira à entrada de novos produtores devido à facilidade de acesso à tecnologias de produção e pequena escala de produção.

Ameaça de produtos substitutos
- Elevada competição com produtos substitutos, principalmente filé de pescado importado.

Poder de negociação dos clientes (compradores)
- Médio, devido ao grande número de canais de venda, principalmente pequenas unidades de processamento e pesque-pagues.

Poder de negociação dos fornecedores
- Médio, devido a grande quantidade de fornecedores e fabricantes de insumos e equipamentos na região.

Grau de rivalidade entre os concorrentes
- Baixo, devido ao grande número de indústrias de processamento na região, pesque-pagues e varejo.

Figura 8.26. Análise competitiva do Polo de tilápicultura de Santa Catarina a partir do modelo de cinco forças de Porter.

O poder de negociação dos compradores é médio e isso resulta principalmente do grande quantidade de canais de comercialização – muitos de pequeno porte – dentre os quais se destacam os pesque-pagues e as pequenas unidades de processamento de pescado. Essas últimas constituem uma das principais características do Polo de tilápicultura de Santa Catarina.

No que se refere ao poder de negociação dos fornecedores de insumos, e tal como ocorre no Paraná, verifica-se uma relação de poder mais equilibrada que em outros polos, haja vista a grande quantidade de fabricantes e fornecedores existentes no Polo e proximidades. Porém, como a participação dos piscicultores em cooperativas é relativamente menor que no Paraná, estes acabam se beneficiando menos das vantagens oferecidas por estas organizações nas operações de compra de insumos.

Finalmente, o grau de rivalidade entre os piscicultores deste Polo é baixo tendo em vista o grande número de unidades de processamento e pesque-pagues, os quais favorecem o atendimento da demanda. Vale ressaltar a existência de uma demanda importante de filé de tilápia na região, em grande parte ligada aos hábitos alimentares da população e, sobretudo, à renda per capita elevada, tendo em vista o grande desenvolvimento industrial da região.

8.3.4. Distribuição do valor agregado

A análise da divisão do valor agregado ao longo da cadeia produtiva permite o entendimento sobre como cada um dos agentes se apropria do capital acumulado desde a produção até a venda do bem ao consumidor final, conforme observado na Figura 8.27.

![Figura 8.27. Divisão do valor agregado na cadeia produtiva da tilápia de Santa Catarina, para a produção de filé. Elaboração própria.](image-url)

- **R$ 4,20** (Sendo o custo de produção ou os insumos, representam R$ 3,78 e o valor agregado R$ 0,42. Sendo o produto final filé, que representa 30% do peixe inteiro, temos que colocar o peso da rentabilidade (0,30) no valor do produto final. Dessa forma, o produtor agrega 1,5% do valor do produto) → 15% acumulado.

- **R$ 7,60** (O insumo referente ao quilograma de peixe para fazer um kg de filé, equivale R$ 12,60, ou 44%. O valor agregado o esse produto pelo frigorífico vale R$ 7,60 e representa 27% ao valor do produto final) → 71% acumulado.

- **R$ 8,23** (Nesse caso, ao kg de filé de tilápia comprada do processador por R$ 20,20, são agregados mais R$ 8,23, representando agregação de 29% ao valor) → 100% acumulado.

- **R$ 28,23** (100%)
A análise de divisão do valor agregado do filé de tilápia no Polo de Santa Catarina mostra um equilíbrio entre a participação do processador e do varejo na formação do preço final do filé da tilápia para o consumidor final. Os produtores são os que agregam menor valor, apenas 1,5% neste Polo.

É importante ressaltar que a participação dos piscicultores deste Polo na divisão do valor agregado da tilápia vendida no varejo é a menor na comparação com os Polos do Paraná (Oeste 2% e Norte 7%), Ilha Solteira (8%), do Submédio e Baixo São Francisco (20%) e do Ceará (8%).

8.4. Arcabouço legal e regulatório

8.4.1. Regulação ambiental

O sistema de produção predominante em Santa Catarina é o de viveiros escavados, sendo, portanto, o processo de regularização ambiental composto pela licença ambiental e, eventualmente, outorga de uso de água. Esses processos são geridos pela FATMA – Fundação de Meio Ambiente de Santa Catarina (Tabela 8.10).

Esse representa um gargalo importante para a cadeia produtiva da tilápia em Santa Catarina, haja vista que o processo de licenciamento é bastante demorado. Diversos piscicultores tem dado entrada no processo junto à FATMA, aguardando por mais de dois anos até a obtenção das licenças. Existem relatos de piscicultores que esperam há mais de cinco anos desde o início do processo e ainda não obtiveram suas licenças. Um produtor de alevinos relatou que esperou nove anos para ter sua licença ambiental.

Tabela 8.10. Aspectos gerais do processo de licenciamento ambiental de piscicultura em Santa Catarina.

<table>
<thead>
<tr>
<th>Tempo médio para finalização do processo</th>
<th>Órgão responsável</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licenciamento ambiental</td>
<td>Mais de 2 anos</td>
</tr>
<tr>
<td></td>
<td>FATMA – Fundação de Meio Ambiente de Santa Catarina</td>
</tr>
</tbody>
</table>

8.4.2. Políticas públicas de fomento e extensão

A Tabela 8.11 apresenta uma lista das principais instituições voltadas para a execução de políticas públicas na cadeia produtiva da tilápia em Santa Catarina.

Tabela 8.11. Principais instituições atuantes no Polo de tilapicultura de Santa Catarina.

<table>
<thead>
<tr>
<th>Instituição</th>
<th>Principais áreas de atuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPAGRI</td>
<td>Pesquisa e extensão</td>
</tr>
<tr>
<td>Universidade Federal de Santa Catarina (UFSC)</td>
<td>Pesquisa e extensão</td>
</tr>
<tr>
<td>Fundação Municipal 25 de Julho (Joinville)</td>
<td>Pesquisa e extensão</td>
</tr>
<tr>
<td>Ministério da Agricultura, Pecuária e Abastecimento (MAPA)</td>
<td>Fomento à produção e fiscalização das unidades de processamento</td>
</tr>
<tr>
<td>SEBRAE</td>
<td>Apoio e capacitação em abertura de novos negócios</td>
</tr>
<tr>
<td>Secretaria de Agricultura de Santa Catarina</td>
<td>Licenciamento e fiscalização</td>
</tr>
</tbody>
</table>

8.5. Principais gargalos

O licenciamento ambiental aparece no topo da lista dos principais gargalos do Polo. Como já citado, a demora na obtenção das licenças gera uma insegurança jurídica para os produtores, expondo os mesmos a penalidades por parte dos órgãos de fiscalização e também os impedindo de acessar linhas de créditos bancário e fomento governamental. Um resumo dos principais gargalos da tilapicultura deste polo é citado na Tabela 8.12.

<table>
<thead>
<tr>
<th>Gargalo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licenciamento ambiental</td>
<td>Processo longo e burocrático</td>
</tr>
<tr>
<td>Alto custo de energia elétrica</td>
<td>Alto consumo de energia elétrica devido ao uso intensivo de aeradores</td>
</tr>
<tr>
<td>Melhoramento genético</td>
<td>Necessidade de linhagens mais adaptadas às condições climáticas da região</td>
</tr>
</tbody>
</table>
O elevado custo de energia elétrica foi outro ponto amplamente levantado pelos agentes da cadeia produtiva. O uso de aeradores é uma prática fundamental para a produtividade dos cultivos, consumindo um grande volume de energia.

8.6. Perspectivas futuras

A quase totalidade dos entrevistados afirmou acreditar num crescimento do setor nos próximos anos, principalmente puxado pelo aumento da demanda. No entanto, os mesmos demonstraram grande preocupação com o aumento das importações de filés importados – sobretudo da Ásia – o que pode comprometer a competitividade da cadeia produtiva da tilápia no estado. Essa última preocupação é especialmente evidente em Santa Catarina devido a existência de uma forte indústria pesqueira que também tem forte atuação na importação de pescados. A Tabela 8.13 apresenta as principais tendências do Polo.

Tabela 8.13. Principais tendências do Polo de Santa Catarina.

<table>
<thead>
<tr>
<th>Tendência</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento da oferta e demanda de tilápia</td>
<td>A oferta e, sobretudo, a demanda de tilápia deverá continuar crescendo na região.</td>
</tr>
<tr>
<td>Aumento da competição com pescado importado</td>
<td>Existe uma preocupação generalizada com relação ao crescimento da importação de filés congelados e a consequente competição com a tilápia produzida localmente</td>
</tr>
</tbody>
</table>

Outro aspecto importante colocado pelos agentes da cadeia produtiva se refere ao fato de que o crescimento da produção depende diretamente da resolução do gargalo referente ao licenciamento ambiental.
9. Considerações finais
Uma reviravolta na aquicultura brasileira vem ocorrendo desde o início deste estudo. Em 2015, novas estruturas institucionais extinguiram o Ministério da Pesca e Aquicultura, que passou a ser uma Secretaria dentro do Ministério da Agricultura, Pecuária e Abastecimento. Essa alteração política e estrutural desestabilizou as previsões para o setor. Políticas como Plano Safra para Pesca e Aquicultura, com destinação de mais de R$ 2 bilhões em crédito, e a própria lei do Uso de Águas da União para fins Aquícola, entre outras ações, podem ficar fragilizadas. Em março de 2017, uma nova alteração institucional ameaça o setor que passará a ser responsabilidade do Ministério da Indústria e Comércio. Toda essa incerteza regulatória só aumenta as dificuldades da regularização da indústria aquícola brasileira.

No entanto, o crescimento exponencial da tilapicultura na última década, com a entrada de grandes empresas no ramo, inclusive multinacionais demonstra uma estabilidade já adquirida por um setor que se consolida entre as importantes economias rurais e cujas mudanças políticas ocorridas apresentam pouco efeito prático até o momento.

A cadeia de valor da tilápia é uma agroindústria que vem se profissionalizando em todas as regiões. A vinda de novas empresas internacionais, como a Multinacional Regal Spring Tilápia (a maior produtora de tilápia do mundo), no reservatório de Jupiá, Polo da Ilha Solteira, e da norueguesa AquaGen (maior empresa de melhoramento genético de peixes do mundo) para o Brasil demonstra o potencial do país para essa jovem indústria.

O Grupo financeiro Rabobank prevê que em 2020 o Brasil esteja produzindo aproximadamente 500.000 toneladas de tilápia, aumentando a importância da espécie no mercado interno e potencialmente substituindo o pescado importado. Sendo assim, a possibilidade de o país entrar competitivamente no mercado externo também aumenta.

Observamos ao longo do levantamento de dados o dinamismo da atividade, como os cenários se alteram de um período para o outro, mostrando grande vulnerabilidade às questões ambientais (como toda agroindústria) e também às questões econômicas, como poder de compra do consumidor brasileiro e acordos internacionais que subsidiam a importação de pescado.

Os principais gargalos em comum nos polos de tilapicultura do Brasil podem ser divididos em questões que dependem de apoio governamental, como: licenciamento ambiental, outorga de água e assistência técnica. E questões que dependem do setor privado, como o baixo número de indústrias processadoras.

Ficou evidente que o baixo acesso à assistência técnica diminui bastante a eficiência produtiva. Em uma comparação entre os polos, aqueles que mais usam tecnologia são: Ilha Solteira, onde a maioria dos produtores é de médio e grande porte, e os Polos do Paraná, onde ou a Emater-PR ou as fortes e estruturadas Cooperativas auxiliam na assistência do processo produtivo e o Polo de Santa Catarina. O Polo do SBSF também é competitivo, mas varia dependendo do porte do produtor e se beneficia das fantásticas condições ambientais que favorecem o cultivo.

9.1. Importância dos frigoríficos na tilapicultura brasileira

A tilapicultura brasileira conta com aproximadamente 50 frigoríficos em operação, quando somadas pequenas, médias e grandes com Serviço de Inspeção Federal (SIF/POA), estadual (SIE ou SISBI/POA) e municipal (SIM/POA). Os seis maiores frigoríficos de tilápia do Brasil estão nos polos estudados, sendo eles apresentados na Tabela 9.1.

Tabela 9.1. Maiores produtores de tilápia do Brasil.

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Localização</th>
<th>Produção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copacol</td>
<td>Nova Aurora / PR</td>
<td>90 t/dia</td>
</tr>
<tr>
<td>Genesias</td>
<td>Aparecida do Taboado/MS</td>
<td>50 t/dia</td>
</tr>
<tr>
<td>Mcessab</td>
<td>Riofana/SP</td>
<td>40 t/dia</td>
</tr>
<tr>
<td>Netuno</td>
<td>Submédio São Francisco (BA/PE)</td>
<td>30 t/dia</td>
</tr>
<tr>
<td>Grupo Ambar do Amaral</td>
<td>Santa Fé do Sul</td>
<td>25 t/dia</td>
</tr>
<tr>
<td>Frigopiscos</td>
<td>Toledo/PR</td>
<td>18 t/dia</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>253 t/dia</td>
</tr>
</tbody>
</table>

Além desses, alguns frigoríficos que processam pescados marinhos estão também processando tilápia dada a sua produção ascendente e a redução da produção de peixes marinhos oriundos da pesca.

Considerando que os demais frigoríficos de tilápia do país consigam fazer juntos, uma média de 6 t/dia (6 x 42 frigoríficos = 252 t/dia), teríamos no Brasil um volume de 505 t/dia de tilápia processada, ou 133.320 t/ano (considerando 22 dias de processamento ao mês x 12 meses). Dessa forma, estimamos que 40% da tilápia cultivada passe por algum serviço de inspeção sanitária, regulamentando a tilápia para a comercialização, além de adicionar valor e diferenciar o produto ofertado ao mercado.

Pequenos frigoríficos que processam entre 1 e 5 toneladas ao dia, são de suma importância como canal de mercado para os pequenos produtores e devem ser estimulados, assim como as grandes indústrias. Comprando volumes pequenos, com frequência, e de grande número de produtores regionais, tais empresas viabilizam a comercialização da tilápia desses produtores menores, sendo a grande “saída” comercial para esse tipo de piscicultor. No entanto, o alto custo de investimento inicial e a dificuldade em realizar uma gestão eficiente, são os principais desafios dos pequenos frigoríficos. Dessa forma, em todos os Polos, incluindo o Oeste do Paraná, onde se encontra uma grande estrutura de processamento de tilápias, há processamento clandestino, aquele sem a ocorrência de serviço de inspeção sanitária. A prática ocorre principalmente nos momentos de maior oferta de peixe ou quando ocorre maior preço de filé e nas regiões mais distantes dos frigoríficos.

A importância das indústrias frigoríficas vai além da certificação sanitária. Embora o principal produto seja o filé, a utilização de subprodutos ainda é ínfima no país, apesar de crescente em todas as regiões. Muitos dos frigoríficos visitados comercializam a pele, por exemplo, para a indústria farmacêutica ou de cosmético. A elaboração de novos cortes, pratos e a produção de CMS (carne mecanicamente separada) também é tendência. Quando presente, uma unidade de graxaria com produção de farinhas e óleo também agrega valor e resolve uma importante questão ambiental. O mais importante é que a agregação de valor nos frigoríficos pode desonerar o filé, considerado caro para o consumidor brasileiro em comparação a outras proteinas animais.

Uma das razões para a limitação no número de frigoríficos de tilápias no Brasil é a dificuldade em se ter projetos que sejam considerados adequados para os órgãos fiscalizadores responsáveis tais como as Secretarias de Agricultura Estaduais ou Ministério da Agricultura, Pecuária e Abastecimento. Muitos foram os relatos de que os projetos seguem para apreciação dos órgãos e retornam inúmeras vezes para correções, por vezes demonstrando inconsistência das solicitações ou a incompreensão dos técnicos em cumpri-las. A saída realizada pela indústria da tilápia no Ceará de, juntamente com a Secretaria de Agricultura daquele estado, propor plantas para frigoríficos de pescado “pré-aprovadas” com SIE demonstra a capacidade de evoluir quando se tem interação entre os setores.

9.2. Novos “players”

O crescimento sólido da indústria da tilápia tem atraído para o setor empresários tradicionais do agronegócio brasileiro, como por exemplo o Grupo Bom Futuro - maior produtor mundial de soja e algodão³, além de tradicionais pecuaristas do Triângulo Mineiro que consideram a tilapicultura mais rentável do que a pecuária de corte⁴. Vários outros exemplos são

observados no país, incluindo o processamento de tilápias em frigoríficos de peixes marinhas, a utilização de tilápias em cardápios de culinárias tradicionais que utilizavam peixes marinhas (culinária capixaba e cardápios litorâneos do Rio de Janeiro e Bahia, por exemplo), entre outros exemplos de ascensão da tilápia em diferentes setores no país.

9.3. Polos em ascensão

Como descrito na Introdução, os Polos visitados foram escolhidos pela importância produtiva, no entanto, juntos representam apenas 30% da tilápia produzida no Brasil. A tilápia é realidade em diversos outros municípios e regiões. Além de Furnas, MG, que já é um Polo produtivo consolidado, novos polos produtivos começam a despontar no país, dentre eles: Serra da Mesa (GO); Guadalupe (PI) – inclusive recebendo vários piscicultores experientes que migraram por conta da crise hídrica do Ceará; Cerrado Sul (São João dos Patos, MA); Espírito Santo – onde quase todos os municípios do estado possuem alguma produção de tilápia, entre outras regiões do país.

9.4. Análise de competitividade dos Polos estudados

A produção dos principais municípios dos Polos estudados está representado na Figura 9.1.

Figura 9.1. Produção de tilápia dos principais municípios dos Polos estudados no ano de 2016.
A Tabela 9.2 compila os dados de produção, produtividade e limitações ambientais, facilitando uma comparação das características dos Polos estudados (Tabela 9.3).

Tabela 9.2. Produção, produtividade e principais limitantes ambientais dos Polos estudados.

<table>
<thead>
<tr>
<th>Tamanho</th>
<th>Produção estimada (toneladas, 2015)</th>
<th>Produtividade</th>
<th>Principais limitantes ambientais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque rede</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceará</td>
<td>30.000</td>
<td>55 kg/m³</td>
<td>Eutrofização da água</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Castanhão) 120 kg/m³ (Orós)</td>
<td></td>
</tr>
<tr>
<td>SBSF</td>
<td>30.500</td>
<td>100-140 kg/m³</td>
<td>Baronesa e mexilhão dourad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilha Solteira</td>
<td>25.000</td>
<td>80-100 kg/m³</td>
<td>Instabilidade do volume hídrico</td>
</tr>
<tr>
<td>Norte PR</td>
<td>11.600</td>
<td>100 kg/m³</td>
<td>Mexilhão dourado</td>
</tr>
<tr>
<td>Viveiro escavado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oeste PR</td>
<td>55.598</td>
<td>2,8-5,6 kg / m²</td>
<td>Baixa temperatura nos meses frios (Junho à agosto)</td>
</tr>
<tr>
<td>Santa Catarina</td>
<td>15.000</td>
<td>2,4 kg/m²</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>167.698</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 9.3. Comparativo de preço da tilápia, taxa de utilização de mão de obra, faixa salarial e número de frigoríficos.

<table>
<thead>
<tr>
<th></th>
<th>Preço da tilápia pago ao produtor (R$/kg, peso médio 800g)</th>
<th>Taxa de utilização de mão-de-obra</th>
<th>Faixa salarial de trabalhador de campo (em salário mínimo/mês)</th>
<th>Número de frigoríficos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque rede</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBSF</td>
<td>6,00</td>
<td>1 trabalhador/285 m³</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ceará</td>
<td>5,50</td>
<td>1 trabalhador/333 m³</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Norte PR</td>
<td>4,70</td>
<td>1 trabalhador/900 m³</td>
<td>1,5</td>
<td>9</td>
</tr>
<tr>
<td>Viveiro escavado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilha Solteira</td>
<td>4,50</td>
<td>1 trabalhador/625 m³</td>
<td>1,5</td>
<td>6</td>
</tr>
<tr>
<td>Oeste PR</td>
<td>3,60</td>
<td>1 trabalhador/1,5 ha</td>
<td>1,5</td>
<td>25</td>
</tr>
<tr>
<td>Santa Catarina</td>
<td>3,80</td>
<td>1 trabalhador/1,5 ha</td>
<td>1,5</td>
<td>12</td>
</tr>
</tbody>
</table>

*Peixe de 1kg.

Em todos os Polos estudados há ameaça de competição de produtos substitutos, seja de importação, seja oriundo da pesca, mas estes últimos são menos competitivos pelo maior preço e menor regularidade de oferta comparado com a produção de tilápia. Já no caso das importações, o principal produto que compete com a tilápia são os fileés brancos de menor preço, como do Pangassius e da Merluza, cujos preços médios do filei congelado custam ao consumidor R$ 16,00/kg e R$ 22,00/kg, respectivamente. No entanto, essa competição não é absoluta, uma vez que a demanda pela tilápia se mantém elevada e a importação deste tipo de produto (NCM 0304??), apesar de ser alta, caiu 25% entre 2013 e 2015 (Figura 9.2).
As barreiras à entrada de novos produtores na cadeia produtiva são consideradas altas a médias, principalmente nos Polos do Nordeste, Ilha Solteira e Norte Paranaense, pela dificuldade em obter licenciamento ambiental e outorga d’água nos respectivos reservatórios. Alguns reservatórios encontram-se com excesso de solicitação de área aquícola, em outros a falta de ordenamento, situação hídrica crítica pela longa estiagem e manejo inadequado limitam a entrada de novos produtores. Certamente a regularização das áreas de cultivo é importante, mas em alguns reservatórios a tilapicultura está se desenvolvendo à parte da legislação. Nos Polos de tilapicultura de Santa Catarina e Oeste do Paraná, a limitação é a posse da terra pelo seu elevado valor na região, mas ocorrendo grande entrada de agricultores tradicionais na atividade.

O poder de negociação dos compradores pode ser considerado muito maior nos Polos em que a indústria processadora é um importante mercado para os tilapicultores, neste caso, os produtores se submetem aos preços pagos pelas indústrias em troca de um contrato (nem sempre oficial) de compra e venda que garante a comercialização de grandes volumes. Nos Polos cuja venda de tilápia inteira para atravessadores é mais representativa, geralmente há atuação de um grande número de agentes intermediários apresentando um maior equilíbrio de forças entre piscicultor e comprador, por outro, essa situação dificulta no estabelecimento de contratos formais com maiores escalas.

Quanto ao poder de negociação dos fornecedores de insumos, para a maioria dos Polos há uma relação de poder desequilibrada que favorece o produtor, mas não significa que os benefícios sejam em economia financeira real, mas muitas vezes em serviços adicionais como assistência técnica e/ou extensos prazos para pagamento, por exemplo. Isso se deve ao elevando número de empresas disputando a venda de insumos nos Polos produtivos, com a exceção do Polo de Orós. Nos demais polos, o número de empresas de ração que disputam o mercado de ração no polo chega a 14 empresas, na maioria das vezes, além da ração, oferecem assistência técnica e negociação de prazo de pagamento que pode chegar até a data da despesa. No entanto, a situação não é igual para todos os insumos, para equipamentos, vacina, software entre outras tecnologias, o reduzido número de fornecedores em todo o Brasil desequilibra esse poder favorecendo os fornecedores, mas vale lembrar que a ração é o insumo de maior impacto econômico da tilapicultura e mesmo o benefício do pagamento na despesa pode garantir a viabilidade de uma piscicultura. Essa relação varia nas regiões com grande número de piscicultores de pequeno porte e baixa assistência técnica, nessa situação, o produtor tem maior dificuldade em negociar o preço de compra para pequenos volumes de insumo. Essa realidade ocorre em vários dos polos estudados, principalmente nos pequenos produtores dos Polos do Ceará, do SBSF e do Norte do Paraná.

Finalmente, percebe-se que o grau de rivalidade entre os piscicultores dos polos é médio, pois mesmo com um crescente mercado de tilápia no país, a falta de organização dos piscicultores e a consequente pulverização da oferta.
10. Referências

GROSSI HIJO, C. A. **Quantificação do efeito do açude Castanhão sobre o fluxo fluvial de material particulado em suspensão e nutrientes para o estuário do rio Jaguaribe, Ceará/Brasil.** 2009. 54 f. (Dissertação de Mestrado em Ciências Marinhos Tropicais) – Universidade Federal do Ceará, Fortaleza.

SILVA, G. F. da. Importância das barragens Antiga e Pedra Velha para a microregião alagoinha do Sertão do Sã Francisco e para a pesca artesanal na Região Hidrográfica Talhada. 2015. 43 f. Monografia (Bacharelado em Engenharia de Pesca) – Universidade do Estado da Bahia, Paulo Afonso.

SOUZA, D. S. *Desenvolvimento de software em linguagem C Sharp como ferramenta para o gerenciamento do modelo de pisciculturas associativas implantadas no reservatório de Moxotó, rio Sã Francisco*. 2013. 54 f. Dissertação (Bacharelado em Engenharia de Pesca) – Universidade do Estado da Bahia, Paulo Afonso.

TENÓRIO, R. A. *Biorremediação em ambientes limínicos eutrofizados com a utilização de DendrocoÐphus brasiliensis* Pesta, 1921 (Crustacea: Anostraca: Thamnocephalidae) e seu aproveitamento na aquicultura. 2011. 191 f. Tese Doutorado em Química e Biotecnologia) – Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió.

