Probiotic bacteria may prevent haemorrhagic septicaemia by maturing intestinal host defences in Brazilian native surubins

G.F.A. JESUS1,2, F.D.N. VIEIRA1, B.C. SILVA3, M.M.D.S. JUNIOR1, T.T. USHIZIMA4, E.C. SCHMIDT5, Z.L. BOUZON5, S.A. PEREIRA2, G.V. PEREIRA6,7, M.L. MARTINS2 & J.L.P. MOURIÑO2

1 Marine Shrimp Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; 2 AQUOS – Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; 3 EPAGRI – Researcher - Rodovia Admar Gonzaga, Florianópolis, SC, Brazil; 4 Mar & Terra Company – P&D, Pimenta Bueno, Rondônia, Brazil; 5 Department of Cell Biology, Embryology and Genetics (BEG), Central Laboratory of Electron Microscopy, UFSC, Florianópolis, Brazil; 6 School of Biological Sciences, Faculty of Science and Environment, Plymouth University, Plymouth, UK; 7 CAPES Foundation, Ministry of Education of Brazil, Brazil-DF, Brazil

Received 6 July 2015; accepted 18 November 2015
Correspondence: G.F.A. Jesus, Rod. Admar Gonzaga 1346, 88040-900 Florianópolis, Santa Catarina, Brazil. E-mail: gabriel_faj@hotmail.com

Abstract
The farming of hybrid surubins in Brazil has been affected by bacterial diseases. To avoid this problem, the development of prophylactics such as probiotics has proved to be a promising tool against bacterial outbreaks. This study evaluated the dietary supplementation with lactic acid bacterium Weissella cibaria and its probiotic action in the intestinal tract focusing the hemato-immunological parameters, histology and electron microscopy. A total of 96 fish were maintained in a recirculation system and divided into 12 tanks, two treatments (supplemented and unsupplemented fish) and six replicates. Fish were fed supplemented commercial diet with W. cibaria for a period of 45 days, and the unsupplemented fish were with commercial feed without probiotic. The numbers of red blood cells, thrombocytes and lymphocytes were higher in supplemented fish after 45 days (P < 0.05). The percentage of phagocytosis, the agglutination titre and the total immunoglobulin concentration were higher in fish fed probiotic. Fish fed supplemented diet presented increased length and width of the intestinal villi, the number of goblet cells and villi’s perimeter. The probiotic W. cibaria was capable of colonizing and benefitting the surubins’ gastrointestinal tracts, improving intestinal health and the hemato-immunological parameters of fish.

KEY WORDS: gut colonization, intestinal cells, Pimelodidae, probiotic, scanning electron microscopy, transmission electron microscopy

Introduction
The hybrid surubim (Pseudoplatystoma reticulatum female × P. corruscans male), an important and valuable fish for Brazilian aquaculture, is one of the most appreciated freshwater species for human consumption and for ornamental marketing in South America (Roubach et al. 2003). Factors such as good growth, high carcass yield, excellent quality meat, gentle flavour, light colour, lack of intramuscular bones and high market price make this fish appreciated by fishermen (Campos 2004; Godinho et al. 2007; Nuñez et al. 2011).

As a result of intensive surubim farming, bad management practices, high stocking densities, bad quality of feeds and poor water quality (Moraes & Martins 2004), disease emergence can occur (Silva et al. 2012). The use of probiotics is an alternative to keep the fish healthy, especially by the fact that they improve the immune system and reduce stress and disease occurrence (Ringo & Gatesoupe 1998; Merrifield et al. 2010a; Ringo et al. 2010; Mourinho et al. 2012).

Benefits linked to the use of probiotics have already been proved in many studies, such as their action in the competitive exclusion of pathogenic bacteria (Vine et al. 2004), as