

Science & Industry Joining Forces to Meet Seafood Demands

FENACAM & LACQUA/SARA (WAS) '15
LATIN AMERICAN & CARIBBEAN AQUACULTURE 2015
SOUTH AMERICAN REGIONAL AQUACULTURE 2015
XII INTERNATIONAL SHRIMP FARMING SYMPOSIUM
XII INTERNATIONAL AQUACULTURE TRADE SHOW
IX INTERNATIONAL AQUACULTURE SYMPOSIUM
3rd TILAPIA ECONOMIC FORUM

NOVEMBER 16-19, 2015
CEARA CONVENTION CENTER
FORTALEZA, BRAZIL

The annual international conference & exposition of

W RLD
AQUACULTURE
Society

held in conjunction with Fenacam 2015

SPONSORS

INFLUENCIA DA DENSIDADE DE ESTOCAGEM NO CULTIVO DE LAMBARIS

Adolfo Jatobá*; Anderson Sloboda; Álvaro C. Grocholski; Luiz Henrique da Silva; Luiz Sérgio Moreira; Bruno Corrêa da Silva.

IFCatariense – *Campus* Araquari – Laboratório de Aquicultura. Cx Postal: 21. Araquari – SC – Brasil CEP: 88245-000 e-mail: adolfo.jatoba@ifc-araquari.edu.br

O objetivo deste trabalho foi avaliar a densidade de estocagem na produção de alevinos de duas espécies de lambaris (*Astyanax bimaculatus* e *A. scabripinnis*), em um sistema de recirculação.

Foram realizados dois experimentos: o primeiro, 1.080 lambaris do rabo prata (*Astianax scabripinnis*); enquanto no segundo, 1.080 lambaris do rabo amarelo (*A. bimaculatus*) com peso médio de 0,25 ± 0,05 g, entre os meses de abril a junho de 2014 (56 dias). Para ambas as espécies, os lambaris foram coletados e transferidos para caixas de polietileno (36 L úteis) equipadas com sistema de recirculação (50% do volume por hora) e filtro *dry wet*. Doze aquários foram divididos em quatro tratamentos (0,25, 0,75, 2,25 e 6,75 peixes.L⁻¹), em triplicata. Os peixes foram alimentados, *ad libitum*, quatro vezes ao dia. O oxigênio dissolvido e temperatura foram monitorados duas vezes ao dia, pH, amônia total e nitrato semanalmente.

O oxigênio dissolvido $(6,1-3,3 \text{ mg.L}^{-1})$, temperatura $(23,4-22,8 \,^{\circ}\text{C})$, pH (7,2-6,7), amônia total $(0,21-0,0 \text{ mg.L}^{-1})$ e nitrito $(0,17-0,0 \text{ mg.L}^{-1})$ foram considerados adequados para o cultivo da espécie. , com os parâmetros. A maior média final, foi observada na menor densidade $(0,25 \text{ peixes.L}^{-1})$, enquanto a maior produtividade e eficiência alimentar foram observadas nas densidades mais elevadas $(6,75 \text{ peixes.L}^{-1})$, enquanto a sobrevivência não divergiu entre os tratamentos para ambas as espécies estudas (Tabela 1).

A elevação da densidade de estocagem no cultivo de lambaris demonstra uma correlação positiva com a produtividade e eficiência alimentar aparente, sem comprometer a sobrevivência e parâmetros de qualidade de água do cultivo.

Tabela 1. Médias finais ± desvio padrão dos índices zootécnicos dos lambaris do rabo prata (*Astyanax scabripinnis*) e rabo amarelo (*A. bimaculatus*) submetidos a diferentes densidades de estocagem.

estocagem.					
Espécie	Índice Zootécnico	Densidade de peixes (peixes.L-1)			
		0,25	0,75	2,25	6,75
A. scabripinnis	Média final (g)	2,80±0,22	3,29±0,09	2,68±0,47ab	2,32±0,16ª
	GPS (g.semana ⁻¹)	0,22±0,02	0,27±0,03	0,21±0,05ªb	0,17±0,02°
	Sobrevivência (%)	93,3±11,6	91,4±7,7	96,7±3,1	89,3±10,7
	Eficiência Alimentar	0,21±0,07	0,43±0,15	0,61±0,02b	0,64±0,0 ^b
	Produtividade (kg.m ⁻³)	0,67±0,05	2,25±0,19	5,86±1,19 ^b	13,96±1,53°
A. bimaculatus	Média final (g)	4,02±0,73	4,49±1,26	3,34±0,91ªb	2,62±0,17ª
	GPS (g.semana ⁻¹)	0,55±0,10	0,61±0,18	0,45±0,13ªb	0,35±0,02°
	Sobrevivência (%)	85,2±6,4	78,3±11,8	77,5±7,8	82,9±12,1
	Eficiência Alimentar	0,55±0,05 a	0,64±0,17	0,69±0,16ªb	0,91±0,27b
	Produtividade (kg.m ⁻³)	0,85±0,14	2,04±0,55	4,80±1,44 ^b	14,74±3,12°

^{*}Dados perdidos (DP); Ganho em peso semanal (GPS); Diferentes letras indicam diferenças significativas (p>0,05) na ANOVA e no Tukey para separação de médias.